P2990 Sulfhydryl angiotensin-converting enzyme inhibition induces a sustained reduction of low-density lipoprotein oxidazibility and systemic oxidative stress in patients with essential hypertension

2003 ◽  
Vol 24 (5) ◽  
pp. 582
Author(s):  
A LIGUORI
Author(s):  
Eman A. Al-Rekabi ◽  
Dheyaa K. Alomer ◽  
Rana Talib Al-Muswie ◽  
Khalid G. Al-Fartosi

The present study aimed to investigate the effect of turmeric and ginger on lipid profile of male rats exposed to oxidative stress induced by hydrogen peroxide H2O2 at a concentration of 1% given with consumed drinking water to male rats. Methods: 200 mg/kg from turmeric and ginger were used, and the animals were treatment for 30 days. Results: the results showed a significant increase in cholesterol, triglycerides, low density lipoprotein (LDL), very low density lipoprotein (VLDL), whereas it explained a significant decrease in high density lipoprotein (HDL) of male rats exposed to oxidative stress when compared with control group. the results showed a significant decrease in cholesterol, triglycerides, (LDL), (VLDL), whereas it explained a significant increase in (HDL) of rats treated with turmeric and ginger at dose 200 mg/kg when compared with male rats exposed to oxidative stress.


1993 ◽  
Vol 11 (10) ◽  
pp. 1103-1111 ◽  
Author(s):  
Elena Maggi ◽  
Eugenia Marchesi ◽  
Valentina Ravetta ◽  
Francesco Falaschi ◽  
Giorgio Finardi ◽  
...  

2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Chandrakala Aluganti Narasimhulu ◽  
Dmitry Litvinov ◽  
Danielle Jones ◽  
Chittoor Sai-Sudhakar ◽  
Michael Fristenberg ◽  
...  

Hypothesis: Oxidized low density lipoprotein (Ox-LDL) has properties that profoundly affect cardiovascular function. We hypothesized that Ox-LDL is likely to be formed in the left ventricular blood (LVB) when the heart is subjected to ischemic conditions and the ejection fraction (EF) is low. We speculated whether “stagnation” of LDL in the LV could result in increased formation of Ox-LDL. Objective: We studied whether there is an increased level of Ox-LDL in the LVB as opposed to peripheral blood (PB), and whether its presence correlated with the EF. Also we examined whether a higher level of Ox-LDL negatively correlated with the activity of paraoxonase 1 (PON 1). Methods: Following the Institutional Review Board (IRB) approval, 62 HF patients were enrolled in the study. All patients underwent pre-operative transthoracic echocardiographic assessment of ventricular function. Left ventricular ejection fractions were determined using the Simpsons bi-plane technique. 2ml of LVB and 5ml of PB samples were taken before coronary artery bypass surgery, or a surgery with replacement of mitral, aortic or tricuspid valve. Blood level of Ox-LDL was determined by ELISA (Mercodia), and PON 1 activity was determined by the rate of conversion of its substrate p-nitrophenyl acetate into p-nitrophenol. Results: The result showed significant increase in Ox-LDL in LVB as compared to PB (p=0.032) in HF subjects even when EF was near normal. There was no significant increase in subjects with lower EF. In contrast, Ox-LDL levels increased in the PB of subjects with lower EF and reached those of LVB. We also noticed that there was a statistically significant negative correlation between EF and Ox-LDL levels in both LVB and PB (p < 0.05). The activity of PON1, an antioxidant enzyme that protects LDL from oxidation showed decreased levels both in LV blood as well as in PB with decreased EF. It was observed that there was a statistically significant difference in PON1 levels between LV and PB of subjects having EF>60% (p = 0.03). Conclusions: In conclusion the results suggest that there might be oxidative stress associated with LVB even when the EF is not compromised. In contrast, the increase in PB Ox-LDL with poor EF might suggest that the low blood flow to peripheral tissues and end organs also might contribute to increased oxidative stress. The results also might suggest that persistent oxidative stress could have affected the clearance mechanisms of Ox-LDL.


Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 540
Author(s):  
Malkanthi Evans ◽  
Najla Guthrie ◽  
Bassem F. El-Khodor ◽  
Brandon Metzger ◽  
Saradhadevi Varadharaj

A-F Betafood® is a whole food-based health product. The product contains phytonutrients and bioactives with antioxidant properties that may support gallbladder and liver function. Herein, we investigated the efficacy of A-F Betafood® on gallbladder and liver function. In this randomized, placebo-controlled, parallel study fifty overweight but otherwise healthy adults received A-F Betafood® or placebo for 12 weeks. Gallbladder function as assessed by gallbladder volume, ejection fraction (GBEF), ejection rate, wall thickness and liver function determined via aspartate aminotransferase, alanine aminotransferase, and gamma-glutamyltransferase, and high-sensitivity c-reactive protein analysis at baseline and week 12 were the primary outcomes. Total cholesterol, low-density lipoprotein-cholesterol, high-density lipoprotein-cholesterol, triglycerides, and oxidative stress markers including oxidized low-density lipoprotein, tumor necrosis factor-α, adiponectin and malonyldialdehyde (MDA) were assessed as secondary outcomes. A-F Betafood®-supplementation significantly reduced gallbladder wall thickness (p = 0.049) by 9% compared to placebo from baseline to week 12. The A-F Betafood® group alone had significant improvements in gallbladder volume (32%; p = 0.044) and GBEF (19%; p = 0.047) at week 12. There were no changes in liver function, oxidative stress markers or blood lipid concentrations, though MDA concentrations decreased in both groups. Our findings demonstrate A-F Betafood®-supplementation significantly improves measures of gallbladder function and support healthy gallbladder function in the individuals with gall bladder condition.


2016 ◽  
Vol 83 (4) ◽  
pp. 442-446 ◽  
Author(s):  
Xiaoxia Shi ◽  
Dangdang Li ◽  
Qinghua Deng ◽  
Zhicheng Peng ◽  
Chenxu Zhao ◽  
...  

Dairy cows with fatty liver or ketosis exhibit hyperketonemia, oxidative stress, and a low rate of very low density lipoprotein (VLDL) assembly, and there may be a potential link among these characteristics. Therefore, the objective of this study was to determine the effect of acetoacetic acid (AcAc) on the assembly of VLDL in cow hepatocytes. Cultured cow hepatocytes were treated with different concentrations of AcAc with or without N-acetylcysteine (NAC, an antioxidant). AcAc treatment decreased the mRNA expression and activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), and significantly increased malondialdehyde (MDA) content, indicative of oxidative stress. Furthermore, AcAc treatment significantly down-regulated the mRNA expression of apolipoprotein B100 (ApoB100), apolipoprotein E (ApoE), and low density lipoprotein receptor (LDLR), which thus decreased VLDL assembly and increased triglyceride (TG) accumulation in these bovine hepatocytes. Importantly, NAC relieved AcAc-induced oxidative stress and increased VLDL assembly. In summary, these results suggest that AcAc-induced oxidative stress affects the assembly of VLDL, which increases TG accumulation in bovine hepatocytes.


2011 ◽  
Vol 18 (2) ◽  
pp. 159-166 ◽  
Author(s):  
Hua Wang ◽  
Zhi-Hao Wang ◽  
Jing Kong ◽  
Meng-Yun Yang ◽  
Gui-Hua Jiang ◽  
...  

2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Zoe Irwin ◽  
Emeir M. McSorley ◽  
Mary M. Slevin ◽  
Lisa Rowan ◽  
Paul McMillen ◽  
...  

AbstractEvidence from observational studies indicates that seaweed consumption may reduce the risk of non-communicable diseases such as cardiovascular disease, type two diabetes, and obesity. Accumulating evidence from in vitro and animal studies suggest seaweed have antihyperlipidemic, anti-inflammatory and antioxidant properties which may in part be attributed to the high content of soluble dietary fibre in seaweeds. The viscosity of seaweed fibres is suggested to mediate antihyperlipdiemic effects via the alteration of lipid/bile acid absorption kinetics to decrease low-density lipoprotein cholesterol (LDL). Thus, there is a need to evaluate the efficacy of seaweed derived dietary fibre in the management of dyslipidemia. Therefore, the aim of this study was to determine the effect of a fibre rich extract from Palmaria palmata on the lipid profile as well as markers of inflammation and oxidative stress in healthy adults. A total of 60 healthy participants (30 male and 30 female) aged 20 to 58 years, were assigned to consume the Palmaria palmata fibre extract (5g/day), Synergy-1 and the placebo (maltodextrin) for a duration of 4 weeks with a minimum 4 week washout between each treatment in a double blind, randomised crossover study conducted over 5 months. Fasting concentrations of cholesterol, triglycerides and high-density lipoprotein cholesterol (HDL) were analysed and low-density lipoprotein cholesterol (LDL) and LDL: HDL ratio was calculated. C-reactive protein (CRP) and Ferric Reducing Ability of Plasma (FRAP) were analysed as markers of inflammation and oxidative stress, respectively. Supplementation for 4 weeks with Palmaria palmata resulted in favourable changes to lipid profiles with a reduced LDL:HDL ratio; however intention-to-treat univariate ANCOVA identified no significant difference between the treatment groups over time on any of the lipid profile markers. A non-significant increase in CRP and triglyceride concentration along with lower FRAP was also observed with Palmaria palmata supplementation. Evidence from this study suggests that Palmaria palmata may have effects on lipid metabolism and appears to mobilise triglycerides. More research is needed in individuals with dyslipidaemia to fully elucidate these effects.


Sign in / Sign up

Export Citation Format

Share Document