Reduction of specific fuel consumption in gas turbine power plants

1997 ◽  
Vol 38 (10-13) ◽  
pp. 1219-1224 ◽  
Author(s):  
Wen-Jei Yang
Author(s):  
Daniel E. Caguiat

The Naval Surface Warfare Center, Carderock Division (NSWCCD) Gas Turbine Emerging Technologies Code 9334 was tasked by NSWCCD Shipboard Energy Office Code 859 to research and evaluate fouling resistant compressor coatings for Rolls Royce Allison 501-K Series gas turbines. The objective of these tests was to investigate the feasibility of reducing the rate of compressor fouling degradation and associated rate of specific fuel consumption (SFC) increase through the application of anti-fouling coatings. Code 9334 conducted a market investigation and selected coatings that best fit the test objective. The coatings selected were Sermalon for compressor stages 1 and 2 and Sermaflow S4000 for the remaining 12 compressor stages. Both coatings are manufactured by Sermatech International, are intended to substantially decrease blade surface roughness, have inert top layers, and contain an anti-corrosive aluminum-ceramic base coat. Sermalon contains a Polytetrafluoroethylene (PTFE) topcoat, a substance similar to Teflon, for added fouling resistance. Tests were conducted at the Philadelphia Land Based Engineering Site (LBES). Testing was first performed on the existing LBES 501-K17 gas turbine, which had a non-coated compressor. The compressor was then replaced by a coated compressor and the test was repeated. The test plan consisted of injecting a known amount of salt solution into the gas turbine inlet while gathering compressor performance degradation and fuel economy data for 0, 500, 1000, and 1250 KW generator load levels. This method facilitated a direct comparison of compressor degradation trends for the coated and non-coated compressors operating with the same turbine section, thereby reducing the number of variables involved. The collected data for turbine inlet, temperature, compressor efficiency, and fuel consumption were plotted as a percentage of the baseline conditions for each compressor. The results of each plot show a decrease in the rates of compressor degradation and SFC increase for the coated compressor compared to the non-coated compressor. Overall test results show that it is feasible to utilize anti-fouling compressor coatings to reduce the rate of specific fuel consumption increase associated with compressor performance degradation.


Author(s):  
M.V. Cherniavskyi

The structure of electricity cost formation for consumers, including depending on the cost of TPP generation, «green» energy and other sources, is investigated, and the main conditions of the efficient regulatory function fulfillment in the power system by thermal power generation in the conditions of Ukraine's course on carbon-free energy are formulated. It is shown that excessive electricity losses in networks and, especially, accelerated increase of the share of «green» generation, much more expensive than nuclear, hydro and thermal, mainly contribute to the growth of electricity costs for non-household consumers and the need to raise tariffs for the population. This accelerated increase directly contradicts the Paris Climate Agreement, according to which plans to reduce Ukraine’s greenhouse gas emissions must be developed taking into account available energy resources and without harming its own economy. The dependences of the specific fuel consumption on the average load and the frequency of start-stops of units are found and it is shown that the increased specific fuel consumption on coal TPPs is an inevitable payment for their use as regulating capacities of UES of Ukraine. In this case, the higher the proportion of «green» generation and a smaller proportion of generating thermal power plants, especially increasing specific fuel consumption. It is proved that in the conditions of growth of the share of «green» generation in Ukraine the share of production of pulverized coal thermal power plants should be kept at the level of not less than 30 % of the total electricity generation. It is substantiated that a necessary condition for coal generation to perform a proper regulatory role in the power system is to introduce both environmental and technical measures, namely — reducing the suction of cold air to the furnace and other boiler elements, restoring condensers and cooling systems, etc. An important factor in reducing the average level of specific fuel consumption is also the reduction of coal burn-out at thermal power plants, where it still remains significant, due to the transfer of power units to the combustion of bituminous coal concentrate. Bibl. 12, Fig. 5, Tab. 5.


Author(s):  
Jennifer J. Kolden ◽  
William J. Bigbee-Hansen ◽  
Donald G. Iverson

A mechanically coupled, two spool, intercooled and regenerated gas turbine engine designed for a high altitude, long endurance (HALE) mission is described. The design philosophy was based on minimization of total energy expended using a two stage optimization process utilizing a multivariate regression and optimization technique. This optimization process addressed the impact of the propulsion system as installed on an air vehicle, including all installation effects. Weight and drag of the complete nacelle as they were affected by the characteristics of the engine was included. A brake specific fuel consumption (BSFC) of 0.262 lb/hr/hp (0.159 kg/hr/kw) and mission average specific fuel consumption (MSFC) of 0.266 lb/hp-hr (0.160 kg/kW-hr) was estimated for the bare engine and an MSFC of 0.327 lb/hp-hr (0.199 kg/kW-hr) was estimated for the fully installed engine, including the nacelle drag penalty, where MSFC is defined as the total fuel required to complete the mission divided by the total energy expended during the mission. A comparison with other gas turbine and reciprocating engines currently considered as candidates for HALE applications is also presented.


Author(s):  
Carlos J. Mendez ◽  
Ramkumar N. Parthasarathy ◽  
Subramanyam R. Gollahalli

Alcohols serve as an alternate energy resource to the conventional petroleum-based fuels. The objective of this study was to document the performance and emission characteristics of blends of n-propanol and Jet A fuel in a small-scale gas turbine engine. The experiments were conducted in a 30kW gas turbine engine with a single-stage centrifugal flow compressor, annular combustion chamber and a single-stage axial flow turbine. In addition to neat propanol and Jet A fuel, three blends, with 25%, 50% and 75% of propanol by volume, were used as the fuels. The thrust, thrust-specific fuel consumption, and the concentrations of CO and NOx in the exhaust were measured and compared with those measured with Jet A fuel. The engine was operated at the same throttle settings with all the fuels. The operational range of engine rotational speed was shifted downwards with the addition of propanol due to its lower heating value. The thrust specific fuel consumption increased with the addition of propanol, while the CO emission index increased and NOx emission index decreased.


Author(s):  
R. G. Mills ◽  
K. W. Karstensen

Adverse consequences of losing electrical power to complex electronic and fire control equipment, or of the sudden variations of shore power, cause naval combatants to operate two generators most of the time, each at light load where specific fuel consumption of simple-cycle gas turbines is particularly high. The recuperated gas turbine with variable power-turbine nozzles has a much better specific fuel consumption, especially at part load. Herein described is a compact recuperated gas turbine with variable power-turbine nozzles designed for marine and industrial use, suitable with or without intercooling. These features yield a specific fuel consumption that is comparable to marine diesels used for generator drive, and essentially flat across the entire usable load range.


Author(s):  
M. N. Khan ◽  
Ibrahim M. Alarifi ◽  
I. Tlili

Abstract Environmentally friendly and effective power systems have been receiving increased investigation due to the aim of addressing global warming, energy expansion, and economic growth. Gas turbine cycles are perceived as a useful technology that has advanced power capacity. In this research, a gas turbine cycle has been proposed and developed from a simple and regenerative gas turbine cycle to enhance performance and reduce Specific fuel consumption. The impact of specific factors regarding the proposed gas turbine cycle on thermal efficiency, net output, specific fuel consumption, and exergy destruction, have been inspected. The assessments of the pertinent parameters were performed based on conventional thermodynamic energy and exergy analysis. The results obtained indicate that the peak temperature of the Proposed Gas Turbine Cycle increased considerably without affecting fuel consumption. The results show that at Pressure Ratio (rp = 6) the performance of the Proposed Gas Turbine Cycle is much better than Single Gas Turbine Cycle but the total exergy destruction of Proposed Gas Turbine Cycle higher than the SGTC.


1964 ◽  
Vol 179 (1) ◽  
pp. 343-364 ◽  
Author(s):  
K. Petrie

In the last two decades there has been a progressive increase in the scope of small gas turbine development and application, both in commercial and military fields. Technological advances in the military field have created demands for prime movers able to meet more stringent operational requirements. An environment now exists in the U.S. Armed Forces conducive to the acceptance and use of small gas turbines that can be adapted to the many specialized applications demanding distinctive physical characteristics. In 1957, the U.S. Bureau of Naval Weapons entered into a contract with Solar, a Division of International Harvester Company, for the design and development of a small, lightweight, single-shaft gas turbine engine to power a one-man helicopter. Rated at 55 s.h.p. for 100°F ambient conditions, the engine design requirements were based on simplicity of operation and maintenance, low production cost, and a short development time. These factors were considered more important than optimum specific power, fuel consumption and weight. A two-shaft version of this engine was also required to power a one-man flying platform. To facilitate the required low engine airflow, weight and rugged characteristics, a single-stage centrifugal compressor and radial inflow turbine, mounted back to back, were selected. A unique feature of the two-shaft engine was the simple method of achieving two-shaft capability by using the exducer portion of the radial turbine as a power turbine. This design resulted in both engines having the same nominal performance, weight and envelope dimensions, with maximum component interchangeability. A comprehensive aerodynamic development programme was undertaken to improve component efficiencies and various aspects of this programme are discussed. Based on favourable results from this programme, the building and development of an uprated engine was undertaken. By incorporating a modified compressor, a 38 per cent increase in s.h.p. and a 6 per cent decrease in specific fuel consumption (s.f.c.) was obtained. Probably the most important factor in the choice of a small gas turbine for military applications is its ability to develop more power, per unit weight and volume, than other engine types. In general, the specific weight of reciprocating engines, in the same power class as the subject gas turbine, average about 10–15 lb/hp with specific volumes ranging from 0.220 to 0.30 fr3/hp, compared to values of 0.53 lb/hp and 0.027 ft3/hp for the turbine. Over 20 different variations of this engine have been produced for such diverse applications as small aircraft and boat prime movers, aircraft and helicopter auxiliary power plants, mobile generator sets, and ‘winterization’ kits for U.S. Army field service. Intensive efforts are being made by companies on both sides of the Atlantic to develop the small gas turbine for a variety of applications. It seems reasonable to predict that these efforts will ultimately lead to the development of units with improved performance and lower initial cost.


2019 ◽  
Vol 3 (2) ◽  
pp. 29
Author(s):  
Muhammad Adib

               Gas turbine Centaur 40 drive gas compressor operates 24 hours a day and continuously with monitored output parameters, namely pressure and the gas flow capacity In its operation, it is often found that the optimal output parameters are generated during low ambient temperatures, for example in the night, cloudy and rainy. This study is aimed to determine the effect of changes in ambient temperature on the gas turbine power. During operation and research was done, the independent variable used is ambient temperature at 24 – 33 0C at constant 100% rotation of the turbine shaft. The decrease in gas turbine performance is seen from the increase in Specific Fuel Consumption (SFC), a decrease in the power produced and thermal efficiency. Specific fuel consumption value from the calculation results is 0.06072 kg/kW.h at 24 0C ambient temperature and 0.06565 kg/kW.h at 33 0C ambient temperature. Power produced by the power turbine is 3532,657 HP at 24 0C ambient temperature and 3046,557 HP at 33 0C ambient temperature, while the thermal efficiency cycle is 54,159% at 24 0C ambient temperature and 49,727% at 33 0C ambient temperature. Keywords: gas turbine, ambient temperature, specific fuel consumption, thermal efficiency.


In this study, a process of inlet air cooling was implemented in the intake of a land-based gas turbine engine for electricity generation. The motivation behind the study is to improve the performance of the gas turbine engine in hot climate conditions,which causes a significant decrease in the output power and an increase in specific fuel consumption. For inlet air cooling, a refrigeration cycle was attached to the turbo-shaft gas turbine engine,and power required by the refrigeration is extracted from the mechanical engine power output of the gas turbine. A 43 MWclass gas turbine engine which is similar totheGeneral Electric LM6000 engine was modeled in this study. Considering an average coefficient of performance of 3.0 for a refrigeration system, the inlet cooling provided (by supplying cooled inlet air at 15oC) a 22.21% net power increase anda5.2% power specific fuel consumption improvement at 55oCambient conditions.


Sign in / Sign up

Export Citation Format

Share Document