Osmotic dehydration progression in apple tissue I: spatial distribution of solutes and moisture content

1999 ◽  
Vol 42 (3) ◽  
pp. 125-132 ◽  
Author(s):  
D Salvatori ◽  
A Andrés ◽  
A Chiralt ◽  
P Fito
2013 ◽  
Vol 726-731 ◽  
pp. 3803-3806
Author(s):  
Bing Ru Liu ◽  
Jun Long Yang

In order to revel aboveground biomass of R. soongorica shrub effect on soil moisture and nutrients spatial distribution, and explore mechanism of the changes of soil moisture and nutrients, soil moisture content, pH, soil organic carbon (SOC) and total nitrogen (TN) at three soil layers (0-10cm,10-20cm, and 20-40cm) along five plant biomass gradients of R. soongorica were investigated. The results showed that soil moisture content increased with depth under the same plant biomass, and increased with plant biomass. Soil nutrient properties were evidently influenced with plant biomass, while decreased with depth. SOC and TN were highest in the top soil layer (0-10 cm), but TN of 10-20cm layer has no significant differences (P < 0.05). Moreover, soil nutrient contents were accumulated very slowly. These suggests that the requirement to soil organic matter is not so high and could be adapted well to the desert and barren soil, and the desert plant R. soongorica could be acted as an important species to restore vegetation and ameliorate the eco-environment.


2013 ◽  
Vol 9 (2) ◽  
pp. 187-196 ◽  
Author(s):  
Juliana M. Silva ◽  
Muriel G. Cantu ◽  
Vera Rodrigues ◽  
Marcio A. Mazutti

AbstractThis work evaluated the effects of osmotic dehydration on convective drying kinetics of figs. It used the experimental design methodology to evaluate the influence of sucrose concentration, temperature and time on the amount of total soluble solids (TSS) and moisture content of the figs. After the osmotic dehydration, it evaluated the convective drying kinetics at temperatures from 55 to 75°C. A mathematical model was employed to fit the experimental data. From the experimental data of the osmotic dehydration, it was seen that the moisture content of the figs after the treatment was closely related to the amount of TSS of the figs. Low moisture content and high TSS content were obtained for a narrow range of independent variables comprised between 55–60°C, 55–63 wt% and 260–280 min for temperature, sucrose concentration and exposure time, respectively. In the convective drying kinetics of the figs, there were no verified significant differences in the final time of drying of non-treated and osmotically dehydrated figs. However, the shrinkage was considerably reduced in the osmotically treated figs. The use of osmotic treatment enables the obtainment of figs softer than the simple use of convective drying without changing the final time of drying.


2009 ◽  
Vol 66 (1) ◽  
pp. 40-43 ◽  
Author(s):  
Sabrina Bernardi ◽  
Renata B. Bodini ◽  
Bruna Marcatti ◽  
Rodrigo Rodrigues Petrus ◽  
Carmen Sílvia Favaro-Trindade

Osmotic dehydration is becoming more popular as a complementary treatment in the processing of dehydrated foods, since it presents some advantages such as minimising heat damage to the colour and flavour, inhibiting enzymatic browning and thus dispensing the addition of sulphite and, mainly, reducing energy costs. The objective of the present study was to evaluate the effect of using inverted sugar and sucrose syrups as osmotic agents in the dehydration of mango. The conditions used in the dehydration process were: syrup/fruit ratio of 3:1 (v/w); temperature of 45ºC and constant stirring. The in natura and osmo-dehydrated fruits were evaluated in relation to pH, moisture content, water activity (a w) and soluble solids (ºBrix). Solids incorporation and loss in mass after the dehydration process were also determined. The sensory acceptance of the in natura and osmo-dehydrated fruits was determined for the attributes of aroma, flavour, texture and overall acceptance using a hedonic scale. Osmotic dehydration resulted in a reduction in moisture content and water activity, an increase in Brix and maintenance of the pH. The treatment with inverted sugar syrup resulted in more significant alterations in moisture content, a w, Brix, solids incorporation and loss in mass than the treatment with sucrose syrup. Mangos osmo-dehydrated with inverted sugar (55.3% inversion rate) syrup obtained acceptance similar to in natura mangos, this treatment being considered the most adequate for dehydration purposes.


2018 ◽  
Vol 51-52 (1) ◽  
pp. 37-45 ◽  
Author(s):  
János Unger ◽  
Nóra Skarbit ◽  
Tamás Gál

This part of the study on absolute moisture content in the mid-latitude urban canopy layer first gives a comparison on intra-urban relative and absolute humidity patterns showing an example based on a long dataset. The comparison clearly demonstrates the usefulness of the utilization of absolute measure opposite to the temperature dependent relative one. This supports the earlier statements found in the literature albeit these statements are based on only case studies or short datasets. Then a short overview follows which presents the main results of studies about urban absolute moisture content. These studies focused mainly on urban-rural and less on intra-urban humidity differences. The scale differences are used for the grouping of studies based on the number of available measurement sites as well as their spatial distribution and density in the investigated urban regions.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3429 ◽  
Author(s):  
Joanna Cichowska ◽  
Dorota Witrowa-Rajchert ◽  
Lidia Stasiak-Różańska ◽  
Adam Figiel

The aim of this work was to analyse the effect of ultrasound-assisted osmotic dehydration of apples v. Elise on mass transfer parameters, water activity, and colour changes. Ultrasound treatment was performed at a frequency of 21 kHz with a temperature of 40 °C for 30–180 min using four osmotic solutions: 30% concentrated syrups of erythritol, xylitol, maltitol, and dihydroxyacetone (DHA). The efficiency of the used solutes from the polyol groups was compared to reference dehydration in 50% concentrated sucrose solution. Peleg’s model was used to fit experimental data. Erythritol, xylitol, and DHA solutions showed similar efficiency to sucrose and good water removal properties in compared values of true water loss. The application of ultrasound by two methods was in most cases unnoticeable and weaker than was expected. On the other hand, sonication by the continuous method allowed for a significant reduction in water activity in apple tissue in all tested solutions.


2016 ◽  
Vol 12 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Reagan J. Pontawe ◽  
James K. Carson ◽  
James T. Agbebavi ◽  
David Klinac ◽  
Janis E. Swan

Abstract Osmotic dehydration offers an alternative to air-drying for reducing moisture content at ambient temperature. Of four different solutes investigated, 22% (mass basis) sodium chloride (NaCl) and 60% (mass basis) sucrose solutions were the most successful, with each achieving approximately a 10% reduction in wet basis moisture content after 8 h without significant detrimental side effects, although NaCl solutions cause noticeable darkening in the pits on the surface of the chestnuts. The presence of the shell and pellicle did not significantly affect the dehydration rate. Osmotic dehydration by NaCl or sucrose prior to mechanical shell removal produced a small increase in efficiency of the shell removal process.


2012 ◽  
Vol 554-556 ◽  
pp. 1466-1469
Author(s):  
Sirasa Jengsooksawat ◽  
Sawanit Aichayawanich

This research aimed to study on the optimum condition for osmotic dehydration of pomelo. The experimental procedure was divided into 2 sections. For first section, the effect of sucrose solution concentration (50, 60, and 70 oBrix) on osmotic rate and moisture content of osmotic dehydrated pomelo were evaluated. After that, the effects of drying temperature (50, 65, and 80oC) on quality of osmotic dehydrated pomelo including, odor, texture, taste, and color were determined. The experimental results showed that the osmotic dehydration rate of pomelo were 6.4, 9.4, and 9.6 oBrix/hr when the pomelo was immersed in 50, 60, and 70 oBrix sucrose solutions, respectively. The moisture content of osmotic dehydrated pomelo which immersed in 70oBrix was lowest. The osmotic dehydrated pomelo that was immersed in 70 oBrix sucrose solutions and dried at 50oC has highest quality.


Sign in / Sign up

Export Citation Format

Share Document