Comparison of fuel efficiency and CO2 emissions between conventional and alternative fuel passenger vehicles. Workshop for evaluation of CO2 emission of vehicles Osamu Kobayashi (Nissan Motor Co., Ltd), Satosi Aida (Toyota Motor Corp.), Kiyoharu Hikino (Hino Motors, Ltd.), Kouiti Yamada (Daihatsu Motor Co., Ltd) Tadao Ikihara (Mitsubisi Motors Corp.)

JSAE Review ◽  
1997 ◽  
Vol 18 (2) ◽  
pp. 208 ◽  
Forests ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 43
Author(s):  
Raffaele Spinelli ◽  
Angelo de Arruda Moura

Compared with purpose-built units, excavator-based harvesters offer many advantages, but they also face one main limitation: a much higher fuel consumption, which also results in higher CO2 emission levels. The fuel efficiency of excavator-based harvesters can be increased by a better interface between the excavator and the harvester head. This study aimed to determine the performance of a new adaptation kit, specifically designed to improve the communication between these two components. The new kit offers real-time adjustment between the power demand of the harvester head and the power output of the excavator, which should help reducing fuel consumption while stabilizing hydraulic fluid temperature. The test was conducted on 53 excavator-based harvesters purchased and managed by a large Brazilian company. Time use, fuel consumption and production were monitored continuously for one full month, before and after installation of the kit. Overall, the study covered 40,000 h of work, during which the harvesters cut, processed, and debarked 4.5 million trees, or 650,000 m3 of wood, under bark. Fuel consumption amounted to 900,000 liters. After installing the adaptation kit, productivity increased 6%, while fuel consumption per hour decreased 3.5%. Fuel consumption and CO2 emissions per product unit decreased 10%, as an average. The effect of random variability typical of an observational study prevented formulating an accurate figure for the amount of fuel that can be saved by installing the adaptation kit. Yet, one may confidently state that, in most cases, installing the kit results in a reduction of fuel use, and that such reduction is most often in the range from −10 to −20% on a per m3 basis.


2017 ◽  
pp. 65-74 ◽  
Author(s):  
Sutthicha Nilrit ◽  
Pantawat Sampanpanish ◽  
Surat Bualert

Emission of carbon dioxide (CO2), a greenhouse gas, from typical passenger vehicles in Thailand was investigated using a chassis dynamometer in the Automotive Emission Laboratory. The vehicle running method was controlled under the standard Bangkok driving cycle. CO2 emissions were measured at three different speeds for the following four vehicle types commonly used in Thailand: heavy duty diesel (HDD), light duty diesel (LDD), and light duty gasoline (LDG) vehicles and motorcycles (MC). HDD vehicles had the highest average CO2 emission rate, followed by LDD, LDG and MC at 1,198.8±93.1, 268.4±21.3, 166.1±27.7 and 42.5±6.1 g km-1, respectively; all values were significantly different (p < 0.05) from each other. The effect of different fuel types, including diesel, gasoline 91, gasohol 95, gasohol 91, liquid petroleum gas (LPG) and natural gas for vehicles (NGV), on the CO2 emission level was also compared. HDD vehicles had a higher rate of CO2 emission when using either NGV or diesel, while LDD vehicles emitted more CO2 with diesel than with NGV. For LDG vehicles, more CO2 was emitted with gasohol 91 than with gasohol E20, LPG or NGV. Finally, MC had a higher average CO2 emission rate with gasohol 95 than with gasoline 91 and gasohol 91 at any vehicle speed. The CO2 emission rates obtained in this study can be used as a basis to create a database that supports development of an efficient transportation management system and reduced vehicular emission of greenhouse gases in Thailand.


2019 ◽  
Vol 29 (Supplement_4) ◽  
Author(s):  
R Fehr ◽  
D Zeegers Paget ◽  
O C L Mekel ◽  
N Bos

Abstract Background Aviation is accountable for significant emissions of carbon dioxide (CO2). Factors determining emissions include, e.g., trip distance, aircraft fuel efficiency, cabin class, atmospheric conditions, and stopovers. Approaches to estimate the carbon footprint are available, e.g., as carbon emissions calculators, offered by carbon offset providers. Goal: To estimate the amount of CO2 emissions associated with EPH conference air travel, for fostering awareness among EPH conference attendees. Methods Based on EPH attendees’ empirical distribution of countries of origin for the 2017 Stockholm and 2018 Ljubljana conference, rough estimates of travel distances, CO2 emissions, and potential carbon offset costs were produced. In the absence of attendees’ detailed travel information, simplifying assumptions had to be made, e.g. on air vs. ground travel, place of departure, and stopovers. In approach A, using two different offset calculators, we look at a given “sample” country which provided a large fraction of foreign participants in both 2017 and 2018, then try to extrapolate to participants at large. In approach B, we use a rough approximation of total distance travelled by all participants, and an average emission value per distance unit. Results In approach A, expectedly, the emission estimates provided by the two different calculators and the associated price tags for offsetting were rather similar, whereas the overall approach B created lower estimates of CO2 emissions. In summary, the conference air travel was estimated to emit 650-930 tons CO2, with the cost for setoff being roughly € 20.000. In a typical case, the conference air travel CO2 emission of a person (foreign to the conference country) was estimated as being 580 kg. For comparison: to bring climate change to a halt, the total annual CO2 emission per person needs to be below 600 kg. Discussion While estimates should be improved, a major task lies in promoting CO2 emission reduction and mitigation.


2021 ◽  
Vol 13 (12) ◽  
pp. 6965
Author(s):  
In-Gyum Kim ◽  
Hye-Min Kim ◽  
Dae-Geun Lee ◽  
Byunghwan Lim ◽  
Hee-Choon Lee

Meteorological information at an arrival airport is one of the primary variables used to determine refueling of discretionary fuel. This study evaluated the economic value of terminal aerodrome forecasts (TAF), which has not been previously quantitatively analyzed in Korea. The analysis data included 374,716 international flights that arrived at Incheon airport during 2017–2019. A cost–loss model was used for the analysis, which is a methodology to evaluate forecast value by considering the cost and loss that users can expect, considering the decision-making result based on forecast utilization. The value was divided in terms of improving fuel efficiency and reducing CO2 emissions. The results of the analysis indicate that the annual average TAF value for Incheon Airport was approximately 2.2 M–20.1 M USD under two hypothetical rules of refueling of discretionary fuel. This value is up to 26.2% higher than the total budget of 16.3 M USD set for the production of aviation meteorological forecasts by the Korea Meteorological Administration (KMA). Further, it is up to 10 times greater than the 2 M USD spent on aviation meteorological information fees collected by the KMA in 2018.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1539
Author(s):  
Karolina Wojtacha-Rychter ◽  
Piotr Kucharski ◽  
Adam Smolinski

The article evaluates the reduction of carbon dioxide emission due to the partial substitution of coal with alternative fuels in clinker manufacture. For this purpose, the calculations were performed for seventy waste-derived samples of alternative fuels with variable calorific value and variable share in the fuel mixture. Based on annual clinker production data of the Polish Cement Association and the laboratory analysis of fuels, it was estimated that the direct net CO2 emissions from fossil fuel combustion alone were 543 Mg of CO2 per hour. By contrast with the full substitution of coal with alternative fuels (including 30% of biomass), the emission ranged from 302 up to 438 Mg of CO2 per hour, depending on fuel properties. A reduction of 70% in the share of fossil fuels resulted in about a 23% decrease in net emissions. It was proved that the increased use of alternative fuels as an additive to the fuel mix is also of economic importance. It was determined that thanks to the combustion of 70% of alternative fuels of calorific value from 15 to 26 MJ/kg, the hourly financial profit gain due to avoided CO2 emission and saved 136 megatons of coal totaled an average of 9718 euros. The results confirmed that the co-incineration of waste in cement kilns can be an effective, long-term way to mitigate carbon emissions and to lower clinker production costs. This paper may constitute a starting point for future research activities and specific case studies in terms of reducing CO2 emissions.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1161
Author(s):  
Maedeh Rahnama Mobarakeh ◽  
Miguel Santos Silva ◽  
Thomas Kienberger

The pulp and paper (P&P) sector is a dynamic manufacturing industry and plays an essential role in the Austrian economy. However, the sector, which consumes about 20 TWh of final energy, is responsible for 7% of Austria’s industrial CO2 emissions. This study, intending to assess the potential for improving energy efficiency and reducing emissions in the Austrian context in the P&P sector, uses a bottom-up approach model. The model is applied to analyze the energy consumption (heat and electricity) and CO2 emissions in the main processes, related to the P&P production from virgin or recycled fibers. Afterward, technological options to reduce energy consumption and fossil CO2 emissions for P&P production are investigated, and various low-carbon technologies are applied to the model. For each of the selected technologies, the potential of emission reduction and energy savings up to 2050 is estimated. Finally, a series of low-carbon technology-based scenarios are developed and evaluated. These scenarios’ content is based on the improvement potential associated with the various processes of different paper grades. The results reveal that the investigated technologies applied in the production process (chemical pulping and paper drying) have a minor impact on CO2 emission reduction (maximum 10% due to applying an impulse dryer). In contrast, steam supply electrification, by replacing fossil fuel boilers with direct heat supply (such as commercial electric boilers or heat pumps), enables reducing emissions by up to 75%. This means that the goal of 100% CO2 emission reduction by 2050 cannot be reached with one method alone. Consequently, a combination of technologies, particularly with the electrification of the steam supply, along with the use of carbon-free electricity generated by renewable energy, appears to be essential.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 130
Author(s):  
Mihail Busu ◽  
Alexandra Catalina Nedelcu

In the past decades, carbon dioxide (CO2) emissions have become an important issue for many researchers and policy makers. The focus of scientists and experts in the area is mainly on lowering the CO2 emission levels. In this article, panel data is analyzed with an econometric model, to estimate the impact of renewable energy, biofuels, bioenergy efficiency, population, and urbanization level on CO2 emissions in European Union (EU) countries. Our results underline the fact that urbanization level has a negative impact on increasing CO2 emissions, while biofuels, bioenergy production, and renewable energy consumption have positive and direct impacts on reducing CO2 emissions. Moreover, population growth and urbanization level are negatively correlated with CO2 emission levels. The authors’ findings suggest that the public policies at the national level must encourage the consumption of renewable energy and biofuels in the EU, while population and urbanization level should come along with more restrictions on CO2 emissions.


2021 ◽  
Author(s):  
KIRAN THAKARE ◽  
ABHAY SINGH ◽  
OBAID ASHRAF Shah ◽  
REVANTH KUMAR bathina ◽  
ASHISH KULKARNI

Sign in / Sign up

Export Citation Format

Share Document