Model of metal fracture in cold deformation and ductility restoration by annealing

Author(s):  
V.L. Kolmogorov
2018 ◽  
Vol 941 ◽  
pp. 1137-1142
Author(s):  
Elena Colombini ◽  
Andrea Garzoni ◽  
Roberto Giovanardi ◽  
Paolo Veronesi ◽  
Angelo Casagrande

The equimolar Cr, Mn, Fe, Co and Ni alloy, first produced in 2004, was unexpectedly found to be single-phase. Consequently, a new concept of materials was developed: high entropy alloys (HEA) forming a single solid-solution with a near equiatomic composition of the constituting elements. In this study, an equimolar CoCrFeMnNi HEA was modified by the addition of 5 at% of either Al, Cu or Zr. The cold-rolled alloys were annealed for 30 minutes at high temperature to investigate the recrystallization kinetics. The evolution of the grain boundary and the grain size were investigated, from the as-cast to the recrystallized state. Results show that the recrystallized single phase FCC structures exhibits different twin grains density, grain size and recrystallization temperatures as a function of the at.% of modifier alloying elements added. In comparison to the equimolar CoCrFeMnNi, the addition of modifier elements increases significantly the recrystallization temperature after cold deformation. The sluggish diffusion (typical of HEA alloys), the presence of a solute in solid solution as well as the low twin boundary energy are responsible for the lower driving force for recrystallization.


2006 ◽  
Vol 101 (6) ◽  
pp. 600-606 ◽  
Author(s):  
G. M. Rusakov ◽  
A. A. Redikul’tsev ◽  
M. L. Lobanov ◽  
A. I. Gomzikov
Keyword(s):  

1993 ◽  
Vol 318 ◽  
Author(s):  
James D. Kiely ◽  
Dawn A. Bonnell

ABSTRACTScanning Tunneling and Atomic Force Microscopy were used to characterize the topography of fractured Au /sapphire interfaces. Variance analysis which quantifies surface morphology was developed and applied to the characterization of the metal fracture surface of the metal/ceramic system. Fracture surface features related to plasticity were quantified and correlated to the fracture energy and energy release rate.


2012 ◽  
Vol 482-484 ◽  
pp. 2033-2036
Author(s):  
Hong Jun Ding ◽  
Xi Bin Wang ◽  
Zhi Qiang Liang ◽  
Qiang Jia

This paper analysis Griffith 's Theory and the metal theoretical fracture strength, thus introducing a line defect that existence in actual crystal — dislocation; And in-depth analysis the metal fracture dislocation mechanism in the micro cutting, and the formation and expand of the Fracture cracks , provides the theory basis for micro cutting


1983 ◽  
Vol 22 (2) ◽  
pp. 149-155 ◽  
Author(s):  
J. R. Ebden ◽  
G. C. Weatherly

2017 ◽  
Vol 62 (1) ◽  
pp. 223-230 ◽  
Author(s):  
A. Szkliniarz

Abstract This paper presents the possibilities of forming the microstructure as well as mechanical properties and electrical conductivity of Cu-3Ti alloy (wt.%) in thermal and thermomechanical processes that are a combination of homogenising treatment, hot and cold working, solution treatment and ageing. Phase composition of the alloy following various stages of processing it into the specified semi-finished product was being determined too. It was demonstrated that the application of cold plastic deformation between solution treatment and ageing could significantly enhance the effect of hardening of the Cu-3Ti alloy without deteriorating its electrical conductivity. It was found that for the investigated alloy the selection of appropriate conditions for homogenising treatment, hot and cold deformation as well as solution treatment and ageing enables to obtain the properties comparable to those of beryllium bronzes.


2021 ◽  
Vol 11 (12) ◽  
pp. 5550
Author(s):  
Yuqiang Chen ◽  
Chuang Xiong ◽  
Wenhui Liu ◽  
Suping Pan ◽  
Yufeng Song ◽  
...  

The influences of cold rolling and subsequent heat treatment on the microstructure evolution of 2524 alloy were investigated using an orientation distribution function (ODF) and electron back-scattered diffraction (EBSD). A preparation method of 2524-T3 aluminum alloy with a strong Brass texture was developed, and its effect on the fatigue properties of the alloy was investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that with the increase in cold rolling deformation from 0% to 80%, the volume fractions of Brass, copper, and S textures in the 2524-T3 alloy also increase, especially in the case of Brass and S textures. However, the volume fractions of cube and Goss textures are reduced significantly, especially for cube textures, which are decreased by 57.4%. Reducing coarse second-phase particles (CSPs) is conducive to the formation of a strong deformation texture during cold rolling. A 10% deformation at each rolling pass, followed by a step annealing, helps the preservation of a Brass texture even after solution treatment at 500 °C for 0.5 h, while a large cold deformation followed by high-temperature annealing helps the formation of a strong cube texture. The Brass texture can enhance the strength while decreasing the fatigue crack growth resistance of this alloy.


2020 ◽  
Vol 50 (12) ◽  
pp. 902-905
Author(s):  
Ya. I. Kosmatskii ◽  
B. V. Barichko ◽  
K. Yu. Yakovleva ◽  
N. V. Fokin ◽  
V. D. Nikolenko

Sign in / Sign up

Export Citation Format

Share Document