The application of the moment equilibrium model to the offset of pressure center of trimming progressive die in IC packaging machine

2003 ◽  
Vol 140 (1-3) ◽  
pp. 653-661 ◽  
Author(s):  
Zone-Ching Lin ◽  
Chang-Cheng Chen
Author(s):  
Serdar Tumkor ◽  
Kishore Pochiraju

Progressive die stamping is a forming process that uses a series of stamping stations to perform simultaneous operations as the sheet is transported incrementally through the die. Designing of progressive die sets and evaluation of the operation for highly complex workpieces are time consuming and iterative at the early stages in the product design. The progressive die design starts with 3D modeling of the part and continues with process sequence planning and strip layout. The strip layout is usually performed manually by experienced progressive die designers. This process begins with unfolding the part and constructing the required part geometry with a series of forming operations. In this study, the same process steps have been used to automate the progressive die design for a given part and stamping press capacity. Therefore, the strip layout already considers the scrap and press tonnage minimizations. A genetic algorithm is used to optimize the strip working sequence with the objective of minimizing the moment difference between two sides of the die. A moment-optimum strip layout will extend the life expectancy of the die, and the maintenance cost will be lowered, particularly for high production rate components.


2014 ◽  
Vol 543-547 ◽  
pp. 72-75
Author(s):  
Xian Hai Yang ◽  
Rong Rong Pan ◽  
Chun Xiang Shang

A new electromagnetic drive rope and pulley type downhole blowout preventer is proposed. The moment equilibrium equation of downhole blowout preventer is established. The structural dimensions of the valve plate connecting position of blowout preventer and pulley rope location are optimized. The dynamic simulation of pulley type downhole blowout preventer is carried out to improve the parameters of this new blowout preventer and to improve its motion performance and mechanical properties.


1992 ◽  
Vol 29 (3) ◽  
pp. 456-465 ◽  
Author(s):  
D. G. Fredlund ◽  
Z. M. Zhang ◽  
L. Lam

Some of the methods of slices satisfying moment equilibrium derived for circular slip surfaces have been extended to accommodate noncircular (or composite) type slip surfaces. A question arises regarding the point about which moment equilibrium should be taken and whether varying the center for moment equilibrium has a significant effect upon the computed factor of safety. This paper addresses the question of the effect of the center for moment equilibrium as it pertains to noncircular (or composite) slip surfaces. In particular, extensions of the Ordinary, Bishop's simplified, and the General Limit Equilibrium (GLE) methods are examined. The results show that considerable variations in the factor of safety can occur when using the extended Ordinary method. The extended Bishop's simplified method shows varying factors of safety as the moment axis moves vertically. Variations in the computed factor of safety can generally be expected to be less than 12%. The GLE, Morgerstern–Price, and Spencer methods are independent of the axis for moment equilibrium. Key words : slope stability, limit equilibrium, moment equilibrium, factor of safety, noncircular slip surface.


2011 ◽  
Vol 189-193 ◽  
pp. 4177-4181 ◽  
Author(s):  
Shi Wei Liu ◽  
Jun Lan Li ◽  
Xing Yu Zhao ◽  
Da Wei Zhang

In order to improve the speed and accuracy of vision alignment for IC packaging, genetic algorithm and Otsu method are applied to vision alignment. According to the features of the image in IC packaging, an improved self-adaptive genetic algorithm combined with Otsu method is proposed in this paper, and the moment invariants method is used to carry out the remaining steps of vision alignment. Finally, experiments are undertaken by using a kind of IC chip, results show that the positioning error is less than 2μm, and the positioning time is less than 60ms.


Author(s):  
A. V. Crewe

The high resolution STEM is now a fact of life. I think that we have, in the last few years, demonstrated that this instrument is capable of the same resolving power as a CEM but is sufficiently different in its imaging characteristics to offer some real advantages.It seems possible to prove in a quite general way that only a field emission source can give adequate intensity for the highest resolution^ and at the moment this means operating at ultra high vacuum levels. Our experience, however, is that neither the source nor the vacuum are difficult to manage and indeed are simpler than many other systems and substantially trouble-free.


Author(s):  
Burton B. Silver

Sectioned tissue rarely indicates evidence of what is probably a highly dynamic state of activity in mitochondria which have been reported to undergo a variety of movements such as streaming, divisions and coalescence. Recently, mitochondria from the rat anterior pituitary have been fixed in a variety of configurations which suggest that conformational changes were occurring at the moment of fixation. Pinocytotic-like vacuoles which may be taking in or expelling materials from the surrounding cell medium, appear to be forming in some of the mitochondria. In some cases, pores extend into the matrix of the mitochondria. In other forms, the remains of what seems to be pinched off vacuoles are evident in the mitochondrial interior. Dense materials, resembling secretory droplets, appear at the junction of the pores and the cytoplasm. The droplets are similar to the secretory materials commonly identified in electron micrographs of the anterior pituitary.


Author(s):  
Thomas M. Moore

In the last decade, a variety of characterization techniques based on acoustic phenomena have come into widespread use. Characteristics of matter waves such as their ability to penetrate optically opaque solids and produce image contrast based on acoustic impedance differences have made these techniques attractive to semiconductor and integrated circuit (IC) packaging researchers.These techniques can be divided into two groups. The first group includes techniques primarily applied to IC package inspection which take advantage of the ability of ultrasound to penetrate deeply and nondestructively through optically opaque solids. C-mode Acoustic Microscopy (C-AM) is a recently developed hybrid technique which combines the narrow-band pulse-echo piezotransducers of conventional C-scan recording with the precision scanning and sophisticated signal analysis capabilities normally associated with the high frequency Scanning Acoustic Microscope (SAM). A single piezotransducer is scanned over the sample and both transmits acoustic pulses into the sample and receives acoustic echo signals from the sample.


Author(s):  
J. S. Wall

The forte of the Scanning transmission Electron Microscope (STEM) is high resolution imaging with high contrast on thin specimens, as demonstrated by visualization of single heavy atoms. of equal importance for biology is the efficient utilization of all available signals, permitting low dose imaging of unstained single molecules such as DNA.Our work at Brookhaven has concentrated on: 1) design and construction of instruments optimized for a narrow range of biological applications and 2) use of such instruments in a very active user/collaborator program. Therefore our program is highly interactive with a strong emphasis on producing results which are interpretable with a high level of confidence.The major challenge we face at the moment is specimen preparation. The resolution of the STEM is better than 2.5 A, but measurements of resolution vs. dose level off at a resolution of 20 A at a dose of 10 el/A2 on a well-behaved biological specimen such as TMV (tobacco mosaic virus). To track down this problem we are examining all aspects of specimen preparation: purification of biological material, deposition on the thin film substrate, washing, fast freezing and freeze drying. As we attempt to improve our equipment/technique, we use image analysis of TMV internal controls included in all STEM samples as a monitor sensitive enough to detect even a few percent improvement. For delicate specimens, carbon films can be very harsh-leading to disruption of the sample. Therefore we are developing conducting polymer films as alternative substrates, as described elsewhere in these Proceedings. For specimen preparation studies, we have identified (from our user/collaborator program ) a variety of “canary” specimens, each uniquely sensitive to one particular aspect of sample preparation, so we can attempt to separate the variables involved.


Author(s):  
Oscar D. Guillamondegui

Traumatic brain injury (TBI) is a serious epidemic in the United States. It affects patients of all ages, race, and socioeconomic status (SES). The current care of these patients typically manifests after sequelae have been identified after discharge from the hospital, long after the inciting event. The purpose of this article is to introduce the concept of identification and management of the TBI patient from the moment of injury through long-term care as a multidisciplinary approach. By promoting an awareness of the issues that develop around the acutely injured brain and linking them to long-term outcomes, the trauma team can initiate care early to alter the effect on the patient, family, and community. Hopefully, by describing the care afforded at a trauma center and by a multidisciplinary team, we can bring a better understanding to the armamentarium of methods utilized to treat the difficult population of TBI patients.


Sign in / Sign up

Export Citation Format

Share Document