Interaction of the technological history of a workpiece material and the machining parameters on the desired quality of the surface roughness of a product

1999 ◽  
Vol 92-93 ◽  
pp. 381-387 ◽  
Author(s):  
J Kopač ◽  
M Bahor
Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 617 ◽  
Author(s):  
Ireneusz Zagórski ◽  
Jarosław Korpysa

Surface roughness is among the key indicators describing the quality of machined surfaces. Although it is an aggregate of several factors, the condition of the surface is largely determined by the type of tool and the operational parameters of machining. This study sought to examine the effect that particular machining parameters have on the quality of the surface. The investigated operation was the high-speed dry milling of a magnesium alloy with a polycrystalline diamond (PCD) cutting tool dedicated for light metal applications. Magnesium alloys have low density, and thus are commonly used in the aerospace or automotive industries. The state of the Mg surfaces was assessed using the 2D surface roughness parameters, measured on the lateral and the end face of the specimens, and the end-face 3D area roughness parameters. The description of the surfaces was complemented with the surface topography maps and the Abbott–Firestone curves of the specimens. Most 2D roughness parameters were to a limited extent affected by the changes in the cutting speed and the axial depth of cut, therefore, the results from the measurements were subjected to statistical analysis. From the data comparison, it emerged that PCD-tipped tools are resilient to changes in the cutting parameters and produce a high-quality surface finish.


2019 ◽  
Vol 26 (4) ◽  
pp. 179-184
Author(s):  
Justyna Molenda

AbstractNowadays lot of scientific work inspired by industry companies was done with the aim to avoid the use of cutting fluids in machining operations. The reasons were ecological and human health problems caused by the cutting fluid. The most logical solution, which can be taken to eliminate all of the problems associated with the use of cooling lubricant, is dry machining. In most cases, however, a machining operation without lubricant finds acceptance only when it is possible to guarantee that the part quality and machining times achieved in wet machining are equalled or surpassed. Surface finish has become an important indicator of quality and precision in manufacturing processes and it is considered as one of the most important parameter in industry. Today the quality of surface finish is a significant requirement for many workpieces. Thus, the choice of optimized cutting parameters is very important for controlling the required surface quality. In the present study, the influence of different machining parameters on surface roughness has been analysed. Experiments were conducted for turning, as it is the most frequently used machining process in machine industry. All these parameters have been studied in terms of depth of cut (ap), feed rate (f) and cutting speed (vc). As workpiece, material steel S235 has been selected. This work presents results of research done during turning realised on conventional lathe CDS 6250 BX-1000 with severe parameters. These demonstrate the necessity of further, more detailed research on turning process results.


2021 ◽  
Author(s):  
Arameh Eyvazian ◽  
Farayi Musharavati ◽  
Afrasyab Khan ◽  
Mohsen Soori ◽  
Tamer A. Sebaey ◽  
...  

Abstract To enhance the quality of machined parts, virtual machining systems are presented in this study. In the turbine blades, the minimization of the surface roughness of the blades can decrease the Reynolds number to decrease the loss of energy in power generation. Due to difficulties of polishing process in minimizing the surface roughness of machined blades, the optimized machining parameters for minimizing the surface roughness is an effective solution for the problem. In this study, a virtual machining system is developed to predict and minimize the surface roughness in 5-Axis machining operations of gas turbine blades. To minimize the surface roughness, the machining parameters were optimized by the Genetic algorithm. To validate the developed system, the turbine blades were machined using a 5-Axis CNC machine tool and the machined blades were measured using the CMM machine to obtain the surface roughness of machined parts. So, a 41.29% reduction in the measured surface roughness and a 42.09% reduction in the predicted surface roughness are obtained using the optimized machining parameters. The developed virtual machining system can be applied in the machining process of turbine blades to enhance the surface quality of machined blades and thus improve the efficiency of gas turbines.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Qing Wu ◽  
Meret Hauldenschild ◽  
Benedikt Rösner ◽  
Tiziana Lombardo ◽  
Katharina Schmidt-Ott ◽  
...  

AbstractIn the history of medieval gilding, a common view has been circulated for centuries that the substrate colour can influence the visual appearance of a gilded surface. In order to fully understand the correlation between the gilding substrate and the colour appearance of the gold leaf laid above, in this paper (Part I) analytical techniques such as colorimetry and interferometric microscopy are implemented on models made from modern gold leaves. This study demonstrates that the substrate colour is not perceptible for gold leaf of at least 100 nm thickness, however the surface burnishing can greatly alter the visual appearance of a gold surface, and the quality of the burnishing is dependent on the substrate materials. Additionally, surface roughness and texture of the substrate can play supplementary roles, which can be visually observed through digital microscopy and quantified through interferometric microscopy. The findings in this paper will form the basis for the study of gold leaf samples taken from medieval European gilded sculptures in Part II.


Author(s):  
Asfana Banu ◽  
Mazilah Abu Bakar ◽  
Mohammad Yeakub Ali ◽  
Erry Y. T. Adesta

In obtaining the best quality of engineering parts, the quality of machined surface plays an essential role. The fatigue strength, wear resistance, and corrosion of workpiece are some of the aspects of the qualities that can be improved. This paper investigates the effect of wire electrical discharge machining (WEDM) process parameters on surface roughness and kerf on stainless steel using distilled water as dielectric fluid and brass wire as tool electrode. The selected process parameters are voltage open, wire speed, wire tension, voltage gap, and off time. Empirical models using Taguchi method were developed for the estimation of surface roughness and kerf. The analysis revealed that off time has major influence on surface roughness and kerf. The optimum machining parameters for minimum surface roughness and kerf were found to be 10 V open voltage, 2.84 µs off time, 12 m/min wire speed, 6.3 N wire tension, and 54.91 V voltage gap. 


2020 ◽  
Author(s):  
Qing Wu ◽  
Meret Hauldenschild ◽  
Benedikt Rösner ◽  
Tiziana Lombardo ◽  
Katharina Schmidt-Ott ◽  
...  

Abstract In history of medieval gilding, a common view has been circulated for centuries that the substrate colour can influence the visual appearance of a gilded surface. In order to fully understand the correlation between the gilding substrate and the colour appearance of the gold leaf laid above, in this paper (Part I) analytical techniques such as colorimetry and interferometric microscopy are implemented on models made from modern gold leaves. This study demonstrates that the substrate colour is not perceptible for gold leaf of at least 100 nm thickness, however the surface burnishing can greatly alter the visual appearance of a gold surface, and the quality of the burnishing is dependent on the substrate materials. Additionally, surface roughness and texture of the substrate can play supplementary roles, which can be visually observed through digital microscopy and quantified through interferometric microscopy. The findings in this paper will form the basis for the study of gold leaf samples taken from medieval European gilded sculptures in Part II.


2021 ◽  
Vol 12 (1) ◽  
pp. 97-108
Author(s):  
Chaoqun Xu ◽  
Congfu Fang ◽  
Yuan Li ◽  
Chong Liu

Abstract. Lapping and polishing technology is an efficient processing method for wafer planarization processing. The structure of the fixed abrasive pad (FAP) is one of the most concerning issues in the research. The FAP structure affects the pressure distribution on the wafer surface, and the pressure distribution during processing has a significant influence on the wafer surface. Therefore, in this paper, a better pressure distribution is obtained by adjusting the angle of the spiral arrangement and the damping distribution of the damping layer of the FAP, thereby obtaining better processing quality. Based on the above theory, a new type of FAP, with coupling between the arrangement of the pellets and the damping regulation of the damping layer, was designed and optimized. The machining effects of different FAPs on the workpiece surface are compared in terms of material removal rate, material removal thickness, and surface roughness. The test results show that the workpiece material removal rate is higher than that of the traditional FAP when using the optimized FAP. The non-uniformity of the optimized FAP for that of material removal was 4.034 µm, which was lower than the traditional FAPs by 24.4 % and 17.6 %, respectively. The average surface roughness, Ra, of the optimized FAP is 0.21 µm, which is lower than 19.1 % and 12.5 % of the two traditional FAPs, respectively. Therefore, workpiece material removal and distribution are more uniform, and the surface quality of the workpiece is better when the optimized FAP processing is used. The test results prove that the optimized pellet arrangement and damping can achieve a better surface quality of the workpiece, which can meet the precision lapping process requirements for high-quality surfaces and large-scale production of brittle and hard materials such as sapphire.


Surface roughness decides the quality of machined components during machining processes. Output parameters namely cutting temperature, cutting force, tool wear, vibration etc. have direct influence on surface roughness of machined components. It is anticipated that better prediction would be possible if the above mentioned parameters are collectively considered with machining parameters. In this investigation, an effort was made to fuse machining parameters with cutting temperature to predict surface roughness while machining H13 steel. The developed regression model was tested for its ability to predict surface quality. The results proved that the developed sensor fusion regression model can be used for better prediction of cutting performance


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7861
Author(s):  
Yali Zhang ◽  
Mingyang Wu ◽  
Keke Liu ◽  
Jianyu Zhang

The nickel-based superalloy is widely used in aerospace. It is a typical difficult-to-cut material with poor plasticity. During the cutting process, the fluctuation of the cutting force caused by the change of cutting conditions can aggravate tool vibration, thereby reducing the surface quality of the machined workpiece. However, the emergence of high-pressure cooling technology provides technical support for overcoming the difficulty in superalloy processing. Therefore, it is of great significance to optimize the tool vibration and surface roughness of cutting GH4169 under high-pressure cooling. Taking GH4169 as the research object, the single-factor and orthogonal high-pressure cooling cutting experiments were conducted firstly in this paper. Then, the methods of the main effect diagram and response surface were applied to analyze the impact of cutting speed, feed rate, cutting depth, and cooling pressure on the three-way tool vibration. Next, MATLAB was adopted to draw the frequency spectrum of radial tool vibration at different cutting speeds, and the relationship between chip morphology, tool vibration, and workpiece surface roughness at different cutting speeds was discussed. Based on this, a mathematical model of radial tool cutting vibration and surface roughness related to the cutting amount and cooling pressure was established. Support vector machine (SVM) was applied to make predictions. Meanwhile, the non-dominated sorting genetic algorithm with an elitist strategy was adopted for multi-objective optimization, and the optimization results were verified through experiments. The results indicated that the feed rate and cutting depth had a great impact on the tool vibration and surface roughness. The established mathematical model was accurate and effective for optimizing the cutting parameters. These results are of great significance to improve the cutting stability and the quality of machined surface.


2016 ◽  
Vol 7 (1) ◽  
pp. 85-91
Author(s):  
Elias Rezvani ◽  
Hamid Ghayour ◽  
Masoud Kasiri

Abstract. In the present study, the effect of machining parameters and recrystallization on surface quality of Al5083 has been investigated. In order to achieve minimum surface roughness of aluminum 5083 samples, statistical test design method of "full factorial" was used. In order to achieve the phenomenon of recrystallization, aluminum 5083 samples were set under 50 % cold rolling mechanical operations. Then, the rolled samples were annealed for 2.5 to 240 min at 250 °C. The stress-strain curves were obtained from tensile tests. Then, dry machining was carried out on the original and crystallized samples under the same conditions. Results of surface roughness, tensile, and microstructure tests indicated the reduction of surface roughness in the crystallized sample.


Sign in / Sign up

Export Citation Format

Share Document