scholarly journals Optimization Research of Machining Parameters for Cutting GH4169 Based on Tool Vibration and Surface Roughness under High-Pressure Cooling

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7861
Author(s):  
Yali Zhang ◽  
Mingyang Wu ◽  
Keke Liu ◽  
Jianyu Zhang

The nickel-based superalloy is widely used in aerospace. It is a typical difficult-to-cut material with poor plasticity. During the cutting process, the fluctuation of the cutting force caused by the change of cutting conditions can aggravate tool vibration, thereby reducing the surface quality of the machined workpiece. However, the emergence of high-pressure cooling technology provides technical support for overcoming the difficulty in superalloy processing. Therefore, it is of great significance to optimize the tool vibration and surface roughness of cutting GH4169 under high-pressure cooling. Taking GH4169 as the research object, the single-factor and orthogonal high-pressure cooling cutting experiments were conducted firstly in this paper. Then, the methods of the main effect diagram and response surface were applied to analyze the impact of cutting speed, feed rate, cutting depth, and cooling pressure on the three-way tool vibration. Next, MATLAB was adopted to draw the frequency spectrum of radial tool vibration at different cutting speeds, and the relationship between chip morphology, tool vibration, and workpiece surface roughness at different cutting speeds was discussed. Based on this, a mathematical model of radial tool cutting vibration and surface roughness related to the cutting amount and cooling pressure was established. Support vector machine (SVM) was applied to make predictions. Meanwhile, the non-dominated sorting genetic algorithm with an elitist strategy was adopted for multi-objective optimization, and the optimization results were verified through experiments. The results indicated that the feed rate and cutting depth had a great impact on the tool vibration and surface roughness. The established mathematical model was accurate and effective for optimizing the cutting parameters. These results are of great significance to improve the cutting stability and the quality of machined surface.

Author(s):  
Xiao-fen Liu ◽  
Wen-hu Wang ◽  
Rui-song Jiang ◽  
Yi-feng Xiong ◽  
Kun-yang Lin ◽  
...  

Abstract The current state of surface roughness focuses on the 2D roughness. However, there are shortcomings in evaluating surface quality of particle reinforced metal matrix composites using 2D roughness due to the fact that the measuring direction has a vital impact on the 2D roughness value. It is therefore of great importance and significance to develop a proper criterion for measuring and evaluating the surface roughness of cutting particle reinforced metal matrix composites. In this paper, an experimental investigation was performed on the effect of cutting parameters on the surface roughness in cutting in-situ TiB2/7050Al MMCs. The 2D roughness Ra, 3D roughness Sa and Sq were comparatively studied for evaluating the machined surface quality of in-situ TiB2/7050Al MMCs. The influence of cutting parameters on the surface roughness was also analyzed. The big difference between roughness Ra measured along cutting and feed directions showed the great impact of measuring direction. Besides, surface defects such as pits, grooves, protuberances and voids were observed, which would influence 2D roughness value greatly, indicating that 3D roughness was more suitable for evaluating surface quality of cutting in-situ TiB2/7050Al MMCs. The cutting depth and feed rate were found to have the highest influence on 3D roughness while the effect of cutting speed was minimal. With increasing feed rate, cutting depth or width, the 3D roughness increased accordingly. But it decreased as cutting speed increased.


2021 ◽  
Author(s):  
He Sui ◽  
Lifeng Zhang ◽  
Shuang Wang ◽  
Zhaojun Gu

Abstract Axial ultrasonic vibration-assisted cutting (AUVC) has proved to have better machining performance compared with conventional cutting methods; however, the effect of numerous and complex influencing factors on machining performance has not been clearly revealed and a recommended combination of cutting conditions has not been proposed yet, especially for difficult-to-machine material such as Ti6Al4V alloy. This paper focuses on experimental and theoretical investigation into machining performance when cutting Ti6Al4V with the AUVC method. First, a retrospective of the separation characteristics of AUVC is provided and the variable parameter cutting characteristics are demonstrated. We classify the influencing factors on machining performance into four categories: machining parameters, vibration parameters, tool choice, and cooling conditions. The relationship between these factors in terms of their effect on machining performance is established theoretically. Then, it describes experiments to determine the influence of these factors on cutting force, tool life, and surface roughness. For absolute influence, the orders for cutting force, tool life, and surface roughness are respectively cutting depth > amplitude > feed rate > rotation speed, rotation speed > feed rate > amplitude > cutting depth, and feed rate > amplitude > cutting depth > rotation speed. However, for relative influence, the order is unified as: amplitude > feed rate > rotation speed > cutting depth. Finally, it suggests a smaller feed rate, larger amplitude, moderate rotation speed, and smaller cutting depth in addition to a WC tool coated with TiAlN and used under HPC cooling condition for optimal performance of AUVC. This recommendation is based on the theoretical analysis and experimental results of cutting force, surface roughness, and tool life.


2015 ◽  
Vol 761 ◽  
pp. 267-272
Author(s):  
Basim A. Khidhir ◽  
Ayad F. Shahab ◽  
Sadiq E. Abdullah ◽  
Barzan A. Saeed

Decreasing the effect of temperature, surface roughness and vibration amplitude during turning process will improve machinability. Mathematical model has been developed to predict responses of the surface roughness, temperature and vibration in relation to machining parameters such as the cutting speed, feed rate, and depth of cut. The Box-Behnken First order and second-order response surface methodology was employed to create a mathematical model, and the adequacy of the model was verified using analysis of variance. The experiments were conducted on aluminium 6061 by cemented carbide. The direct and interaction effect of the machining parameters with responses were analyzed. It was found that the feed rate, cutting speed, and depth of cut played a major role on the responses, such as the surface roughness and temperature when machining mild steel AISI 1018. This analysis helped to select the process parameters to improve machinability, which reduces cost and time of the turning process.


2021 ◽  
Vol 3 (1) ◽  
pp. 58-64
Author(s):  
Rendi Wawanto ◽  
Erwansyah - ◽  
Ariyanto -

In the machining process is very need high precision to get a good result. One of the benchmarks of the quality of the surface of the product workmanship in the machining process is surface roughness. The research was aimed at determining the contribution of the parameters of the machining process conducted on lathes. The research was conducted using lathes with machining process parameters that vary from cutting speed, and depth of nutrition, as well as using fixed parameters of feeding. The experiment was conducted using experimental method with the amount of cutting speed value (Vc) used by St 41 material of 20-25 m/min. The values used in this study were limited to 20, 21, and 22 m/min (Vc) values and cutting depths of 0.5, 0.8, and 1.0 mm. Research shows the results of turning (Vc) 20 m / min. best depth using a cutting depth of 0.5 mm with a surface roughness value (Ra) of 2,743 μm, and (Vc) of 21 m/min, the best depth using a depth of 0.5 mm with a surface roughness value (Ra)1,495 μm, and using (Vc) 22 m/min, the best depth uses a depth of 0.8 mm with a surface roughness value (Ra)1,376 μm. the best value of the turning process uses 3 cutting speeds and 3 cutting depths at the turning process using (Vc) 22 m/min with a depth of 0.8 mm with a surface roughness value (Ra)1,376 μm


2020 ◽  
pp. 99-104
Author(s):  
S.A. Zaydes ◽  
A.N. Mashukov ◽  
T.Ya. Druzhinina

The contact belt of the gate assembly is the main part of high pressure fittings. The serviceability of the fittings assembly as whole depends on the air-tightness and quality of the mating surfaces. The technology of diamond burnishing allows to increase the interface of the nodes by red ucing the surface roughness of the metal-to-metal seal. The real experience for improving of the fittings contact belt due to the use of diamond burnishing of the nozzles seats and the conical surface of the rods.


2010 ◽  
Vol 126-128 ◽  
pp. 885-890
Author(s):  
K.P. Somashekhar ◽  
N. Ramachandran ◽  
Jose Mathew

This work is on the preparation of microelectrodes for μ-EDM operation using μ-WEDG process. Electrodes of Ø500 μm are fabricated with various discharge energy machining conditions. Effects of gap voltage, capacitance & feed rate on the surface finish of the electrodes and overcut of the thus produced micro holes are investigated. The profile of microelectrodes is measured using surface roughness tester with 2μm stylus interfaced with SURFPAK software. The study demonstrated that for brass electrodes an arithmetic average roughness value as low as 1.7μm and an overcut of 3 µm could be achieved. The significant machining parameters are found using ANOVA. Surface of the produced microelectrodes are examined using Scanning Electron Microscope. μ-WEDG process parameters could be adjusted to achieve good surface integrity on microelectrodes. Experimental results showed that the surface roughness of microelectrodes depended primarily on feed rate of the electrode. The observations showed the clear and quantitative correlation existing between the micrometer level surface quality and process parameters. The resulting microelectrodes are found to be of exceptionally high quality and could be used for μ- EDM operation on different types of work materials.


2012 ◽  
Vol 576 ◽  
pp. 41-45
Author(s):  
A.K.M. Nurul Amin ◽  
M.A. Mahmud ◽  
M.D. Arif

The majority of semiconductor devices are made up of silicon wafers. Manufacturing of high-quality silicon wafers includes numerous machining processes, including end milling. In order to end mill silicon to a nano-meteric surface finish, it is crucial to determine the effect of machining parameters, which influence the machining transition from brittle to ductile mode. Thus, this paper presents a novel experimental technique to study the effects of machining parameters in high speed end milling of silicon. The application of compressed air, in order to blow away the chips formed, is also investigated. The machining parameters’ ranges which facilitate the transition from brittle to ductile mode cutting as well as enable the attainment of high quality surface finish and integrity are identified. Mathematical model of the response parameter, the average surface roughness (Ra) is subsequently developed using RSM in terms of the machining parameters. The model was determined, by Analysis of Variance (ANOVA), to have a confidence level of 95%. The experimental results show that the developed mathematical model can effectively describe the performance indicators within the controlled limits of the factors that are being considered.


Author(s):  
Menderes Kam ◽  
Mustafa Demirtaş

This study analyzed the tool vibration (Vib) and surface roughness (Ra) during turning of AISI 4340 (34CrNiMo6) tempered steel samples using Taguchi Method. In this context, Taguchi design L18 (21 × 32) was used to analyze the experimental results. The vibration amplitude values from cutting tools were recorded for different machining parameters, control factors; two different sample hardness (46 and 53 HRc), three different cutting speeds (180, 220, 260 m.min−1), and feed rates (0.08, 0.14, 0.20 mm.rev−1) were selected. The machining parameters giving optimum Vib and Ra values were determined. Regression analysis is applied to predict values of Vib and Ra. Analysis of variance was used to determine the effects of machining parameters on the Vib and Ra values. The most important machining parameters were found to be the feed rate, sample hardness, and cutting speed for Vib and Ra, respectively. The lowest Vib and Ra values were obtained in 46 HRc sample as 0.0022 gRMS and 0.255 µm, respectively. The surface quality can be improved by reducing the sources of vibration by using appropriate machining parameters. As a result, there is a significant relationship between Ra and Vib. The lower Ra values were found during turning process of tempered steel samples according to the literature studies. It is suggested that the process can be preferred as an alternative process to grinding process due to lower cost and machining time. In application of the turning of experiment samples by ceramic cutting tool, a substantial technological and economical benefit has been observed.


2019 ◽  
Vol 18 (3-2) ◽  
pp. 62-68
Author(s):  
Anis Farhan Kamaruzaman ◽  
Azlan Mohd Zain ◽  
Razana Alwee ◽  
Noordin Md Yusof ◽  
Farhad Najarian

This study emphasizes on optimizing the value of machining parameters that will affect the value of surface roughness for the deep hole drilling process using moth-flame optimization algorithm. All experiments run on the basis of the design of experiment (DoE) which is two level factorial with four center point. Machining parameters involved are spindle speed, feed rate, depth of hole and minimum quantity lubricants (MQL) to obtain the minimum value for surface roughness. Results experiments are needed to go through the next process which is modeling to get objective function which will be inserted into the moth-flame optimization algorithm. The optimization results show that the moth-flame algorithm produced a minimum surface roughness value of 2.41µ compared to the experimental data. The value of machining parameters that lead to minimum value of surface roughness are 900 rpm of spindle speed, 50 mm/min of feed rate, 65 mm of depth of hole and 40 l/hr of MQL. The ANOVA has analysed that spindle speed, feed rate and MQL are significant parameters for surface roughness value with P-value <0.0001, 0.0219 and 0.0008 while depth of hole has P-value of 0.3522 which indicates that the parameter is not significant for surface roughness value. The analysis also shown that the machining parameter that has largest contribution to the surface roughness value is spindle speed with 65.54% while the smallest contribution is from depth of hole with 0.8%. As the conclusion, the application of artificial intelligence is very helpful in the industry for gaining good quality of products.


2016 ◽  
Vol 689 ◽  
pp. 7-11 ◽  
Author(s):  
Y. Şahin ◽  
Senai Yalcinkaya

The selection of optimum machining parameters plays a significant role for the quality characteristics of products and its costs for grinding. This study describes the optimization of the grinding process for an optimal parametric combination to yield a surface roughness using the Taguchi method. An orthogonal array and analysis of variance are employed to investigate the effects of cutting environment (A), depth of cut (B) and feed rate (C) on the surface roughness characteristics of mold steels. Confirmation experiments were conducted to verify the optimal testing parameters. The experimental results indicated that the surface finish decreased with cutting-fluid and depth of cut, but decreased with increasing feed rate. It is revealed that the cutting fluid environment had highest physical as well as statistical influence on the surface roughness (71.38%), followed by depth of cut (25.54%), but the least effect was exhibited by feed rate (1.62%).


Sign in / Sign up

Export Citation Format

Share Document