Evaluation of electric energy performance by democratic module PV system field test

2001 ◽  
Vol 67 (1-4) ◽  
pp. 435-440 ◽  
Author(s):  
Masaya Itoh ◽  
Hideki Takahashi ◽  
Takeshi Fujii ◽  
Hideyuki Takakura ◽  
Yoshihiro Hamakawa ◽  
...  
2001 ◽  
Vol 50 (4) ◽  
pp. 380-382
Author(s):  
Hideyuki TAKAKURA ◽  
Takeshi FUJII ◽  
Yoshihiro HAMAKAWA

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 749
Author(s):  
John H. Scofield ◽  
Susannah Brodnitz ◽  
Jakob Cornell ◽  
Tian Liang ◽  
Thomas Scofield

In this work, we present results from the largest study of measured, whole-building energy performance for commercial LEED-certified buildings, using 2016 energy use data that were obtained for 4417 commercial office buildings (114 million m2) from municipal energy benchmarking disclosures for 10 major U.S. cities. The properties included 551 buildings (31 million m2) that we identified as LEED-certified. Annual energy use and greenhouse gas (GHG) emission were compared between LEED and non-LEED offices on a city-by-city basis and in aggregate. In aggregate, LEED offices demonstrated 11% site energy savings but only 7% savings in source energy and GHG emission. LEED offices saved 26% in non-electric energy but demonstrated no significant savings in electric energy. LEED savings in GHG and source energy increased to 10% when compared with newer, non-LEED offices. We also compared the measured energy savings for individual buildings with their projected savings, as determined by LEED points awarded for energy optimization. This analysis uncovered minimal correlation, i.e., an R2 < 1% for New Construction (NC) and Core and Shell (CS), and 8% for Existing Euildings (EB). The total measured site energy savings for LEED-NC and LEED-CS was 11% lower than projected while the total measured source energy savings for LEED-EB was 81% lower than projected. Only LEED offices certified at the gold level demonstrated statistically significant savings in source energy and greenhouse gas emissions as compared with non-LEED offices.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ramhari Poudyal ◽  
Pavel Loskot ◽  
Ranjan Parajuli

AbstractThis study investigates the techno-economic feasibility of installing a 3-kilowatt-peak (kWp) photovoltaic (PV) system in Kathmandu, Nepal. The study also analyses the importance of scaling up the share of solar energy to contribute to the country's overall energy generation mix. The technical viability of the designed PV system is assessed using PVsyst and Meteonorm simulation software. The performance indicators adopted in our study are the electric energy output, performance ratio, and the economic returns including the levelised cost and the net present value of energy production. The key parameters used in simulations are site-specific meteorological data, solar irradiance, PV capacity factor, and the price of electricity. The achieved PV system efficiency and the performance ratio are 17% and 84%, respectively. The demand–supply gap has been estimated assuming the load profile of a typical household in Kathmandu under the enhanced use of electric appliances. Our results show that the 3-kWp PV system can generate 100% of electricity consumed by a typical residential household in Kathmandu. The calculated levelised cost of energy for the PV system considered is 0.06 $/kWh, and the corresponding rate of investment is 87%. The payback period is estimated to be 8.6 years. The installation of the designed solar PV system could save 10.33 tons of CO2 emission over its lifetime. Overall, the PV systems with 3 kWp capacity appear to be a viable solution to secure a sufficient amount of electricity for most households in Kathmandu city.


2016 ◽  
Vol 5 (1-2) ◽  
pp. 162-170
Author(s):  
Henrik Zsiborács ◽  
Béla Pályi ◽  
Gábor Pintér ◽  
Nóra Hegedűsné Baranyai ◽  
Péter Szabó ◽  
...  

In this paper the economic aspects of the water spraying cooling technology of polycrystalline solar modules with respect to the effect of temperature on performance was examined. The main purpose of this work was to explore the economic relations of the spraying cooling technology of solar modules. In the study 5 kW PV system for residential customers, 5 kW and 50 kW PV system for business customer were studied. In Hungarian climatic conditions, considering the inflation values used, the interest rate, the annual utilization of the cooling system, the expected profit and the maintenance costs show us that neither of the cooling solutions is capable of better payback time than the reference uncooled solar PV system. The further research goal is to determine the usability of the cooling system in such countries which have on the one hand more ideal climatic conditions, on the other hand more predictable green energy feed regulations.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4351 ◽  
Author(s):  
Alain Aoun ◽  
Hussein Ibrahim ◽  
Mazen Ghandour ◽  
Adrian Ilinca

Fundamentally, two main methodologies are used to reduce the electric energy bill in residential, commercial, and even industrial applications. The first method is to act on the supply side by integrating alternative means of power generation, such as renewable energy generators, having a relatively low levelized cost of energy. Whereas, the second methodology focuses on the management of the load to minimize the overall paid cost for energy. Thus, this article highlights the importance of demand side management by comparing it to the supply side management having, as criteria, the total achieved savings on the overall annual energy bill of a residential microgrid supplied by two power sources and equipped with an electric vehicle. The optimization takes into consideration the cost of kWh that is paid by the prosumer based on an economical model having as inputs the outcomes of the energy model. The adopted energy model integrates, on the demand side, an intelligent energy management system acting on secondary loads, and on the supply side, a photovoltaic (PV) system with and without battery energy storage system (BESS). The outcome of this work shows that, under the right circumstances, demand side management can be as valuable as supply side control.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5840
Author(s):  
Bat-Erdene Bayandelger ◽  
Yuzuru Ueda ◽  
Amarbayar Adiyabat

There are approximately 200,000 households living in detached houses and gers (yurts) with small coal stoves that burn raw coal in Ulaanbaatar city. A proper heating system and improvement of the energy efficiency of residential dwellings are vitally important for Ulaanbaatar city to reduce air pollution as well as for the operation of the current central energy system. This study shows the experimental results for two gers with two different heating systems and different thermal insulation, for investigating the merits of each. The technical feasibility of the system consisting of an electric thermal storage (ETS) heater with a daytime charging schedule and areal photovoltaic (PV) system was also examined by using a simulation with software developed in MATLAB (R2020a, MathWorks, USA). As a result of the experiment, the indoor comfort level and energy efficiency of the ger with added insulation and an ETS heater with nighttime charging were shown to be enhanced compared with those of the reference ger. The ger with added insulation and the ETS heater consumed 3169 kWh for electric appliances and 5989 kWh for the heating season. The simulation showed that the PV self-consumption rate is 76% for the Ger 2 with the ETS heater because of the daytime charging schedule of the ETS heater. The PV system supplied 31% of the total energy consumed, with the remaining 69% from the main grid.


2018 ◽  
Vol 155 ◽  
pp. 01033 ◽  
Author(s):  
V.T. Dinh ◽  
Yuhao Yan

This article presents a short-term forecast of electric energy output of a photovoltaic (PV) system towards Tomsk city, Russia climate variations (module temperature and solar irradiance). The system is located at Institute of Non-destructive Testing, Tomsk Polytechnic University. The obtained results show good agreement between actual data and prediction values.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2119 ◽  
Author(s):  
Guillermo Valencia ◽  
Aldair Benavides ◽  
Yulineth Cárdenas

A hybrid system was analyzed and optimized to produce electric energy in non-interconnected zones in the Colombian Caribbean region, contributing to the reduction of greenhouse gas emissions and the improvement in efficient energy management. A comparative analysis of the performance of hybrid was conducted using a proposed model, built with historical data for meteorological conditions, wind speed, and solar radiation. The model is integrated by a Southwest Wind Power Inc. wind turbine AIR 403, a proton-exchange membrane fuel cell (PEM), an electrolyzer, a solar panel, and a regulator based on proportional, integral, and derivative (PID) controllers to manipulate oxygen and hydrogen flow entering in the fuel cell. The transient responses of the cell voltage, current, and power were obtained for the demand of 200 W under changes in solar radiation and wind speed for each day of the year 2013 in different meteorological stations, such as Ernesto Cortissoz airport, Puerto Bolívar, Alfonso Lopez airport, and Simon Bolívar airport. Through the adjustment of the hydrogen and oxygen flow into the fuel cell, the maximum contribution of power generation from the fuel cell was presented for the Simon Bolívar airport in November with a value of 158.35 W (9.45%). Multiobjective design optimization under a Pareto diagram front is presented for each place studied to minimize the levelized cost of energy and CO2 emission, where the objective control variables are the number of panel and stack in the photovoltaic (PV) system and PEM.


Sign in / Sign up

Export Citation Format

Share Document