In vitro toxicity of surfactants in U937 cells: Cell membrane integrity and mitochondrial function

1998 ◽  
Vol 50 (4-6) ◽  
pp. 472-476 ◽  
Author(s):  
A. Jelinek ◽  
H.-P. Klöcking
2014 ◽  
Vol 94 (4) ◽  
pp. 601-606 ◽  
Author(s):  
Anna Wysokińska ◽  
Stanislaw Kondracki

Wysokińska, A. and Kondracki, S. 2014. Assessment of changes in sperm cell membrane integrity occurring during the storage of semen from genetically different males using two diagnostic methods. Can. J. Anim. Sci. 94: 601–606. The present study was carried out to assess changes in sperm cell membrane integrity occurring during the storage of semen collected from genetically different domestic male pigs. The study was aimed at assessing differences in the course of changes in the integrity of cell membranes in spermatozoa produced by males with different degrees of genetic diversity (pure-bred males, two-breed hybrids and multi-breed crosses) and testing the usefulness of two methods of sperm cell membrane integrity evaluation, based on material collected from genetically different males. The experiments were conducted on 56 ejaculates collected from 28 domestic male pigs. The examination of sperm cell membrane integrity was performed three times for each ejaculate, i.e., after 1 h, after 24 h and after 48 h from collection. The preparations for analysing cell membrane integrity were made using two methods: the SYBR 14/PI method and the eosin–nigrosin method. It was found that both SYBR 14/PI and eosin–nigrosin staining methods make it possible to successfully assess the integrity of the plasma membrane of domestic pig sperm cells under in vitro conditions. Hybrid pig spermatozoa, especially those from multi-breed crosses, better retain the integrity of their plasmalemmas than the spermatozoa of pure-bred boars. The ejaculates of Hypor cross-breed boars assessed after 1, 24 and 48 h of storage contain more spermatozoa with intact cell membranes than the ejaculates of pure-bred Duroc and Pietrain boars. The ejaculates of Hypor boars also show fewer decaying spermatozoa than those produced by pure-bred boars.


2012 ◽  
Vol 56 (10) ◽  
pp. 5046-5053 ◽  
Author(s):  
Andrew D. Berti ◽  
Justine E. Wergin ◽  
Gary G. Girdaukas ◽  
Scott J. Hetzel ◽  
George Sakoulas ◽  
...  

ABSTRACTDaptomycin (DAP) is increasingly used as a part of combination therapy, particularly in complex methicillin-resistantStaphylococcus aureus(MRSA) infections. While multiple studies have reported the potential for synergy between DAP and adjunctive anti-infectives, few have examined the influence of adjunctive therapy on the emergence of DAP resistance. This study examined eight adjunctive antimicrobial combinations with DAPin vitroand the emergence of DAP resistance over time (up to 4 weeks) using clinical isolates of DAP-susceptible MRSA (MIC, 0.5 μg/ml) in which DAP resistance subsequently developed during patient therapy (MIC, 3 μg/ml). In addition to DAP susceptibility testing, selected strains were examined for phenotypic changes associated with DAP resistance, including changes to cell wall thickness (CWT) and cell membrane alterations. The addition of either oxacillin or clarithromycin in medium containing DAP significantly inhibited the development of DAP resistance through the entirety of the 4-week exposure (10- to 32-fold MIC reduction from that of DAP alone). Combinations with rifampin or fosfomycin were effective in delaying the emergence of DAP resistance through the end of week one only (week one MIC, 0.5 μg/ml; week four MIC, 24 μg/ml). Cell wall thickening was observed for all antibiotic combinations regardless of their effect on the DAP MIC (14 to 70% increase in CWT), while changes in cell membrane fluidity were variable and treatment dependent. DAP showed reduced activity against strains with DAP MICs of 1 to 12 μg/ml, but cell membrane integrity was still disrupted at concentrations achieved with doses greater than 10 mg/kg of body weight. The emergence of DAP resistance in MRSA is strongly influenced by the presence of subinhibitory concentrations of adjunctive antimicrobials. These data suggest that combining DAP with oxacillin or clarithromycin may delay the development of DAP resistance in cases requiring prolonged antibiotic therapy.


Eye ◽  
1999 ◽  
Vol 13 (1) ◽  
pp. 101-103 ◽  
Author(s):  
L Zabala ◽  
C Saldanha ◽  
J Martins E Silva ◽  
P Souza-Ramalho

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Niluni M. Wijesundara ◽  
Song F. Lee ◽  
Zhenyu Cheng ◽  
Ross Davidson ◽  
H. P. Vasantha Rupasinghe

AbstractStreptococcus pyogenes is an important human pathogen worldwide. The identification of natural antibacterial phytochemicals has renewed interest due to the current scarcity of antibiotic development. Carvacrol is a monoterpenoid found in herbs. We evaluated carvacrol alone and combined with selected antibiotics against four strains of S. pyogenes in vitro. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of carvacrol against S. pyogenes were 125 µg/mL (0.53 mM) and 250 µg/mL (1.05 mM), respectively. Kill curve results showed that carvacrol exhibits instantaneous bactericidal activity against S. pyogenes. We also demonstrated the potential mechanism of action of carvacrol through compromising the cell membrane integrity. Carvacrol induced membrane integrity changes leading to leakage of cytoplasmic content such as lactate dehydrogenase enzymes and nucleic acids. We further confirmed dose-dependent rupturing of cells and cell deaths using transmission electron microscopy. The chequerboard assay results showed that carvacrol possesses an additive-synergistic effect with clindamycin or penicillin. Carvacrol alone, combined with clindamycin or penicillin, can be used as a safe and efficacious natural health product for managing streptococcal pharyngitis.


Toxins ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 124
Author(s):  
Miao Zhang ◽  
Yongcai Li ◽  
Yang Bi ◽  
Tiaolan Wang ◽  
Yupeng Dong ◽  
...  

Black spot caused by Alternaria alternata is one of the important diseases of pear fruit during storage. Isothiocyanates are known as being strong antifungal compounds in vitro against different fungi. The aim of this study was to assess the antifungal effects of the volatile compound 2-phenylethyl isothiocyanate (2-PEITC) against A. alternata in vitro and in pear fruit, and to explore the underlying inhibitory mechanisms. The in vitro results showed that 2-PEITC significantly inhibited spore germination and mycelial growth of A. alternata—the inhibitory effects showed a dose-dependent pattern and the minimum inhibitory concentration (MIC) was 1.22 mM. The development of black spot rot on the pear fruit inoculated with A. alternata was also significantly decreased by 2-PEITC fumigation. At 1.22 mM concentration, the lesion diameter was only 39% of that in the control fruit at 7 days after inoculation. Further results of the leakage of electrolyte, increase of intracellular OD260, and propidium iodide (PI) staining proved that 2-PEITC broke cell membrane permeability of A. alternata. Moreover, 2-PEITC treatment significantly decreased alternariol (AOH), alternariolmonomethyl ether (AME), altenuene (ALT), and tentoxin (TEN) contents of A. alternata. Taken together, these data suggest that the mechanisms underlying the antifungal effect of 2-PEITC against A. alternata might be via reduction in toxin content and breakdown of cell membrane integrity.


2021 ◽  
pp. 615-625
Author(s):  
Tomas Jambor ◽  
Julius Arvay ◽  
Eva Tvrda ◽  
Anton Kovacik ◽  
Hana Greifova ◽  
...  

Several plants have the potential to protect essential reproductive processes such as spermatogenesis or steroidogenesis, however, effective concentrations and main mechanisms of action are still unknown. This in vitro study was aimed to assess the effects of Apium graveolens L., Levisticum officinale, and Calendula officinalis L. extracts on the structural integrity, functional activity and gap junctional intercellular communication (GJIC) in mice Leydig cells. TM3 cells were grown in the presence of experimental extracts (37.5, 75, 150 and 300 µg/ml) for 24 h. For the present study, high-performance liquid chromatography analysis was used to quantify flavonoids or phenolic acids. Subsequently, Leydig cell viability was assessed by alamarBlue assay, while the cell membrane integrity was detected by 5 carboxyfluorescein diacetate-acetoxymethyl ester. The level of steroid hormones production was determined by enzyme-linked immunosorbent assay. Additionally, GJIC was assessed by scalpel loading/dye transfer assay. According to our results, Apium graveolens L. significantly increased the viability and cell membrane integrity at 75 µg/ml (109.0±4.3 %) followed by a decline at 300 µg/ml (89.4±2.3 %). In case of Levisticum officinale and Calendula officinalis L. was observed significant decrease at 150 µg/ml (88.8±11.66 %, 87.4±6.0 %) and 300 µg/ml (86.2±9.3 %, 84.1±4.6 %). Furthermore, Apium graveolens L. significantly increased the progesterone and testosterone production (75 and 150 µg/ml) however, Levisticum officinale and Calendula officinalis L. significantly reduced steroid hormones synthesis at 150 and 300 µg/ml. Finally, the disturbance of GJIC was significantly affected at 300 µg/ml of Levisticum officinale (82.5±7.7 %) and Calendula officinalis L. (79.8±7.0 %). The balanced concentration ratio may support the Leydig cell function, steroidogenesis as well as all essential parameters that may significantly improve reproductive functions.


2010 ◽  
Vol 150 ◽  
pp. 451-451
Author(s):  
Shubhadeep Roychoudhury ◽  
Jozef Bulla ◽  
Peter Massanyi ◽  
Manabendra Dutta Choudhury

2020 ◽  
Vol 13 ◽  
Author(s):  
Milad Ashrafizadeh ◽  
Saeed Samarghandian ◽  
Kiavash Hushmandi ◽  
Amirhossein Zabolian ◽  
Md Shahinozzaman ◽  
...  

Background: Ischemia/reperfusion (I/R) injury is a serious pathologic event that occurs due to restriction in blood supply to an organ, followed by hypoxia. This condition leads to enhanced levels of pro-inflammatory cytokines such as IL-6 and TNF-, and stimulation of oxidative stress via enhancing reactive oxygen species (ROS) levels. Upon reperfusion, blood supply increases, but it deteriorates condition, and leads to generation of ROS, cell membrane disruption and finally, cell death. Plant derived-natural compounds are well-known due to their excellent antioxidant and anti-inflammatory activities. Quercetin is a flavonoid exclusively found in different vegetables, herbs, and fruits. This naturally occurring compound possesses different pharmacological activities making it appropriate option in disease therapy. Quercetin can also demonstrate therapeutic effects via affecting molecular pathways such as NF-B, PI3K/Akt and so on. Methods: In the present review, we demonstrate that quercetin administration is beneficial in ameliorating I/R injury via reducing ROS levels, inhibition of inflammation, and affecting molecular pathways such as TLR4/NF-B, MAPK and so on. Results and conclusion: Quercetin can improve cell membrane integrity via decreasing lipid peroxidation. Apoptotic cell death is inhibited by quercetin via down-regulation of Bax, and caspases, and upregulation of Bcl-2. Quercetin is able to modulate autophagy (inhibition/induction) in decreasing I/R injury. Nanoparticles have been applied for delivery of quercetin, enhancing its bioavailability and efficacy in alleviation of I/R injury. Noteworthy, clinical trials have also confirmed the capability of quercetin in reducing I/R injury.


Sign in / Sign up

Export Citation Format

Share Document