251 ORAL The phosphatidylinositide 3-kinase (P13-kinase) inhibitor Pl103 sensitises some ovarian carcinoma (OC) cell lines to paclitaxel or carboplatin

2006 ◽  
Vol 4 (12) ◽  
pp. 80-81
Author(s):  
B. Bhattacharya ◽  
B. Krishnan ◽  
S. Kaye ◽  
M. Ormerod ◽  
P. Workman ◽  
...  
Cancers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 6
Author(s):  
Silvia La Monica ◽  
Claudia Fumarola ◽  
Daniele Cretella ◽  
Mara Bonelli ◽  
Roberta Minari ◽  
...  

Abemaciclib is an inhibitor of cyclin-dependent kinases (CDK) 4 and 6 that inhibits the transition from the G1 to the S phase of the cell cycle by blocking downstream CDK4/6-mediated phosphorylation of Rb. The effects of abemaciclib alone or combined with the third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) osimertinib were examined in a panel of PC9 and HCC827 osimertinib-resistant non-small cell lung cancer (NSCLC) cell lines carrying EGFR-dependent or -independent mechanisms of intrinsic or acquired resistance. Differently from sensitive cells, all the resistant cell lines analyzed maintained p-Rb, which may be considered as a biomarker of osimertinib resistance and a potential target for therapeutic intervention. In these models, abemaciclib inhibited cell growth, spheroid formation, colony formation, and induced senescence, and its efficacy was not enhanced in the presence of osimertinib. Interestingly, in osimertinib sensitive PC9, PC9T790M, and H1975 cells the combination of abemaciclib with osimertinib significantly inhibited the onset of resistance in long-term experiments. Our findings provide a preclinical support for using abemaciclib to treat resistance in EGFR mutated NSCLC patients progressed to osimertinib either as single treatment or combined with osimertinib, and suggest the combination of osimertinib with abemaciclib as a potential approach to prevent or delay osimertinib resistance in first-line treatment.


2021 ◽  
Vol 22 (8) ◽  
pp. 4250
Author(s):  
Kateřina Jáklová ◽  
Tereza Feglarová ◽  
Simona Rex ◽  
Zbyněk Heger ◽  
Tomáš Eckschlager ◽  
...  

A tyrosine kinase inhibitor, vandetanib (Van), is an anticancer drug affecting the signaling of VEGFR, EGFR and RET protooncogenes. Van is primarily used for the treatment of advanced or metastatic medullary thyroid cancer; however, its usage is significantly limited by side effects, particularly cardiotoxicity. One approach to minimize them is the encapsulation or binding of Van in- or onto a suitable carrier, allowing targeted delivery to tumor tissue. Herein, we constructed a nanocarrier based on apoferritin associated with Van (ApoVan). Based on the characteristics obtained by analyzing the average size, the surface ζ-potential and the polydispersive index, ApoVan nanoparticles exhibit long-term stability and maintain their morphology. Experiments have shown that ApoVan complex is relatively stable during storage. It was found that Van is gradually released from its ApoVan form into the neutral environment (pH 7.4) as well as into the acidic environment (pH 6.5). The effect of free Van and ApoVan on neuroblastoma and medullary thyroid carcinoma cell lines revealed that both forms were toxic in both used cell lines, and minimal differences between ApoVan and Van were observed. Thus, we assume that Van might not be encapsulated into the cavity of apoferritin, but instead only binds to its surface.


2021 ◽  
Vol 14 (7) ◽  
pp. 682
Author(s):  
Jianling Bi ◽  
Garima Dixit ◽  
Yuping Zhang ◽  
Eric J. Devor ◽  
Haley A. Losh ◽  
...  

Angiogenesis plays a crucial role in tumor development and metastasis. Both bevacizumab and cediranib have demonstrated activity as single anti-angiogenic agents in endometrial cancer, though subsequent studies of bevacizumab combined with chemotherapy failed to improve outcomes compared to chemotherapy alone. Our objective was to compare the efficacy of cediranib and bevacizumab in endometrial cancer models. The cellular effects of bevacizumab and cediranib were examined in endometrial cancer cell lines using extracellular signal-related kinase (ERK) phosphorylation, ligand shedding, cell viability, and cell cycle progression as readouts. Cellular viability was also tested in eight patient-derived organoid models of endometrial cancer. Finally, we performed a phosphoproteomic array of 875 phosphoproteins to define the signaling changes related to bevacizumab versus cediranib. Cediranib but not bevacizumab blocked ligand-mediated ERK activation in endometrial cancer cells. In both cell lines and patient-derived organoids, neither bevacizumab nor cediranib alone had a notable effect on cell viability. Cediranib but not bevacizumab promoted marked cell death when combined with chemotherapy. Cell cycle analysis demonstrated an accumulation in mitosis after treatment with cediranib + chemotherapy, consistent with the abrogation of the G2/M checkpoint and subsequent mitotic catastrophe. Molecular analysis of key controllers of the G2/M cell cycle checkpoint confirmed its abrogation. Phosphoproteomic analysis revealed that bevacizumab and cediranib had both similar and unique effects on cell signaling that underlie their shared versus individual actions as anti-angiogenic agents. An anti-angiogenic tyrosine kinase inhibitor such as cediranib has the potential to be superior to bevacizumab in combination with chemotherapy.


1993 ◽  
Vol 53 (4) ◽  
pp. 613-620 ◽  
Author(s):  
Cornelia A. M. van den Berg-Bakker ◽  
Anne Hagemeijer ◽  
Elsa M. Franken-Postma ◽  
Vincent T. H. B. M. Smit ◽  
Peter J. K. Kuppen ◽  
...  

2017 ◽  
Vol 42 (1) ◽  
pp. 185-197 ◽  
Author(s):  
Xiaoming Yang ◽  
Jing Sun ◽  
Dandan Xia ◽  
Xupei Can ◽  
Lei Liu ◽  
...  

Background and Aim: Increasing evidence shows that the calpain regulatory subunit Capn4 can modulate the proliferation and metastasis of cancer cells, and plays an important role in the development of malignant tumors. However, there is no information on the clinical significance of Capn4 in epithelial ovarian carcinoma (EOC) or the molecular mechanisms by which Capn4 promotes the growth and metastasis of EOC. Therefore, the aim of this study was to clarify the role of Capn4 in EOC. Methods: We evaluated Capn4 and osteopontin (OPN) expression in EOC cell lines and tissues from patients with ovarian cancer by western blotting and immunohistochemical analysis. We then created cell lines with downregulated and upregulated Capn4 expression, using Capn4-targeting small interfering RNA and a pcDNA3.1-Capn4 overexpression vector, respectively, to investigate its function in EOC in vitro. In addition, we investigated the potential mechanism underlying the function of Capn4 by examining the effect of modifying Capn4 expression on Wnt/β-catenin signaling pathway-related genes by western blotting. Results: Capn4 was overexpressed in clinical EOC tissues compared with that in normal ovarian epithelial tissue, and was associated with poor clinical outcomes. Upon silencing or overexpressing Capn4 in EOC cells, we concluded that Capn4 promotes cell proliferation and migration in vitro. Furthermore, Capn4 promoted EOC metastasis by interacting with the Wnt/β-catenin signaling pathway to upregulate OPN expression. Conclusion: Our study indicates that Capn4 plays a critical role in the progression and metastasis of EOC, and could be a potential therapeutic target for EOC management.


2021 ◽  
Author(s):  
Evelyn M. Mrozek ◽  
Vineeta Bajaj ◽  
Yanan Guo ◽  
Izabela Malinowska ◽  
Jianming Zhang ◽  
...  

Inactivating mutations in either TSC1 or TSC2 cause Tuberous Sclerosis Complex, an autosomal dominant disorder, characterized by multi-system tumor and hamartoma development. Mutation and loss of function of TSC1 and/or TSC2 also occur in a variety of sporadic cancers, and rapamycin and related drugs show highly variable treatment benefit in patients with such cancers. The TSC1 and TSC2 proteins function in a complex that inhibits mTORC1, a key regulator of cell growth, which acts to enhance anabolic biosynthetic pathways. In this study, we identified and validated five cancer cell lines with TSC1 or TSC2 mutations and performed a kinase inhibitor drug screen with 197 compounds. The five cell lines were sensitive to several mTOR inhibitors, and cell cycle kinase and HSP90 kinase inhibitors. The IC50 for Torin1 and INK128, both mTOR kinase inhibitors, was significantly increased in three TSC2 null cell lines in which TSC2 expression was restored.  Rapamycin was significantly more effective than either INK128 or ganetespib (an HSP90 inhibitor) in reducing the growth of TSC2 null SNU-398 cells in a xenograft model. Combination ganetespib-rapamycin showed no significant enhancement of growth suppression over rapamycin. Hence, although HSP90 inhibitors show strong inhibition of TSC1/TSC2 null cell line growth in vitro, ganetespib showed little benefit at standard dosage in vivo. In contrast, rapamycin which showed very modest growth inhibition in vitro was the best agent for in vivo treatment, but did not cause tumor regression, only growth delay.


2019 ◽  
Author(s):  
Yusuke Tarumoto ◽  
Shan Lin ◽  
Jinhua Wang ◽  
Joseph P. Milazzo ◽  
Yali Xu ◽  
...  

AbstractLineage-defining transcription factors (TFs) are compelling targets for leukemia therapy, yet they are among the most challenging proteins to modulate directly with small molecules. We previously used CRISPR screening to identify a Salt-Inducible Kinase 3 (SIK3) requirement for the growth of acute myeloid leukemia (AML) cell lines that overexpress the lineage TF MEF2C. In this context, SIK3 maintains MEF2C function by directly phosphorylating histone deacetylase 4 (HDAC4), a repressive cofactor of MEF2C. Here, we evaluated whether inhibition of SIK3 with the tool compound YKL-05-099 can suppress MEF2C function and attenuate disease progression in animal models of AML. Genetic targeting of SIK3 or MEF2C selectively suppressed the growth of transformed hematopoietic cells underin vitroandin vivoconditions. Similar phenotypes were obtained when exposing cells to YKL-05-099, which caused cell cycle arrest and apoptosis in MEF2C-expressing AML cell lines. An epigenomic analysis revealed that YKL-05-099 rapidly suppressed MEF2C function by altering the phosphorylation state and nuclear localization of HDAC4. Using a gatekeeper allele ofSIK3, we found that the anti-proliferative effects of YKL-05-099 occurred through on-target inhibition of SIK3 kinase activity. Based on these findings, we treated two different mouse models of MLL-AF9 AML with YKL-05-099, which attenuated disease progressionin vivoand extended animal survival at well-tolerated doses. These findings validate SIK3 as a therapeutic target in MEF2C-positive AML and provide a rationale for developing drug-like inhibitors of SIK3 for definitive pre-clinical investigation and for studies in human patients with leukemia.Key PointsAML cells are uniquely sensitive to genetic or chemical inhibition of Salt-Inducible Kinase 3in vitroandin vivo.A SIK inhibitor YKL-05-099 suppresses MEF2C function and AMLin vivo.


Sign in / Sign up

Export Citation Format

Share Document