scholarly journals A Simple Cleaning Intervention to Prevent Transmission of Carbapenemase-Producing Enterobacterales from Hospital Sinks

2020 ◽  
Vol 41 (S1) ◽  
pp. s103-s104
Author(s):  
Jason Kwong ◽  
Marcel Leroi ◽  
Trudi Bannam ◽  
Deidre Edmonds ◽  
Elizabeth Grabsch ◽  
...  

Background: A prolonged outbreak of carbapenemase-producing Serratia marcescens (CPSM) was identified in our quaternary healthcare center over a 2-year period from 2015 through 2017. A reservoir of IMP-4–producing S. marcescens in sink drains of clinical hand basins (CHB) was implicated in propagating transmission, supported by evidence from whole-genome sequencing (WGS). We assessed the impact of manual bioburden reduction intervention on further transmission of CPSM. Methods: Environmental sampling of frequently touched wet and dry areas around CPSM clinical cases was undertaken to identify potential reservoirs and transmission pathways. After identifying CHB as a source of CPSM, a widespread annual CHB cleaning intervention involving manual scrubbing of sink drains and the proximal pipes was implemented. Pre- and postintervention point prevalence surveys (PPS) of CHB drains performed to assess for CPSM colonization. Surveillance for subsequent transmission was conducted through weekly screening of patients and annual screening of CHB in transmission areas, and 6-monthly whole-hospital PPS of patients. All CPSM isolates were assessed by WGS. Results: In total, 6 patients were newly identified with CPSM from 2015 to 2017 (4.3 transmission events per 100,000 surveillance bed days [SBD]; 95% CI, 1.6–9.4). All clinical CPSM isolates were linked to CHB isolates by WGS. The CHB cleaning intervention resulted in a reduction in CHB colonization with CPSM in transmission areas from 72% colonization to 28% (ARR, 0.44; 95% CI, 0.25–0.63). A single further clinical case of CPSM linked to the CHB isolates was detected over 2 years of surveillance from 2017 to 2019 following the implementation of the annual CHB cleaning program (0.7 transmissions per 100,000 SBD; 95% CI, 0.0–3.9). No transmissions were linked to undertaking the cleaning intervention. Conclusions: A simple intervention targeted at reducing the biological burden of CPSM in CHB drains at regular intervals was effective in preventing transmission of carbapenemase-producing Enterobacterales from the hospital environment to patients over a prolonged period of intensive surveillance. These findings highlight the importance of detailed cleaning for controlling the spread of multidrug-resistant organisms from healthcare environments.Funding: NoneDisclosures: Jason Kwong, Austin Health

2016 ◽  
Vol 82 (12) ◽  
pp. 3605-3610 ◽  
Author(s):  
Andreas F. Wendel ◽  
Sofija Ressina ◽  
Susanne Kolbe-Busch ◽  
Klaus Pfeffer ◽  
Colin R. MacKenzie

ABSTRACTReports of outbreaks concerning carbapenemase-producing Gram-negative bacteria in which the main source of transmission is the hospital environment are increasing. This study describes the results of environmental sampling in a protracted polyspecies metallo-beta-lactamase GIM-1 outbreak driven by plasmids and bacterial clones ofEnterobacter cloacaeandPseudomonas aeruginosain a tertiary care center. Environmental sampling targeting wet locations (especially sinks) was carried out on a surgical intensive care unit and on a medical ward on several occasions in 2012 and 2013. We were able to demonstrate 43blaGIM-1-carrying bacteria (mainly nonfermenters but alsoEnterobacteriaceae) that were either related or unrelated to clinical strains in 30 sinks and one hair washbasin. GIM-1 was found in 12 different species, some of which are described here as carriers of GIM-1. Forty out of 43 bacteria displayed resistance to carbapenems and, in addition, to various non-beta-lactam antibiotics. Colistin resistance was observed in twoE. cloacaeisolates with MICs above 256 mg/liter. TheblaGIM-1gene was harbored in 12 different class 1 integrons, some without the typical 3′ end. TheblaGIM-1gene was localized on plasmids in five isolates.In vitroplasmid transfer by conjugation was successful in one isolate. The environment, with putatively multispecies biofilms, seems to be an important biological niche for multidrug-resistant bacteria and resistance genes. Biofilms may serve as a “melting pot” for horizontal gene transfer, for dissemination into new species, and as a reservoir to propagate future hospital outbreaks.IMPORTANCEIn Gram-negative bacteria, resistance to the clinically relevant broad-spectrum carbapenem antibiotics is a major public health concern. Major reservoirs for these resistant organisms are not only the gastrointestinal tracts of animals and humans but also the (hospital) environment. Due to the difficulty in eradicating biofilm formation in the latter, a sustained dissemination of multidrug-resistant bacteria from the environment can occur. In addition, horizontal transfer of resistance genes on mobile genetic elements within biofilms adds to the total “resistance gene pool” in the environment. To gain insight into the transmission pathways of a rare and locally restricted carbapenemases resistance gene (blaGIM-1), we analyzed the genetic background of theblaGIM-1gene in environmental bacteria during a long-term polyspecies outbreak in a German hospital.


2018 ◽  
Vol 78 (6) ◽  
pp. 1370-1376 ◽  
Author(s):  
Svjetlana Dekic ◽  
Jasna Hrenovic ◽  
Tomislav Ivankovic ◽  
Erna van Wilpe

Abstract Bacterium Acinetobacter baumannii is an emergent pathogen associated with nosocomial infections, which can be also found in natural waters. The impact of ecological factors on A. baumannii is insufficiently investigated. The aim was to examine the influence of temperatures (−20 to 80 °C) and pH values (2 to 12) on the survival of environmental and clinical isolates of A. baumannii in nutrient-deprived spring water (SW) and nutrient-rich diluted nutrient broth during 5 months. A. baumannii successfully survived at −20 to 44 °C and neutral pH for 5 months, which is consistent with the persistence of this pathogen in the hospital environment. At temperatures 50 to 80 °C the survival of A. baumannii ranged from 5 days to 5 min. The pH 2 was the most lethal with survival time up to 3 hours, suggesting that acidic conditions are promising for disinfection of water contaminated with A. baumannii. Although the type of media was not statistically significant for long-time survival, the extensively resistant or pandrug-resistant isolates survived better in SW than susceptible or multidrug-resistant isolates. Two distinct colony phenotypes were recorded at extreme temperatures and pH values. The results of this study provide insight into the behaviour of this emerging pathogen in the environment.


Author(s):  
A. Dramowski ◽  
M. Aucamp ◽  
A. Bekker ◽  
S. Pillay ◽  
K. Moloto ◽  
...  

Abstract Background Contamination of the hospital environment contributes to neonatal bacterial colonization and infection. Cleaning of hospital surfaces and equipment is seldom audited in resource-limited settings. Methods A quasi-experimental study was conducted to assess the impact of a multimodal cleaning intervention for surfaces and equipment in a 30-bed neonatal ward. The intervention included cleaning audits with feedback, cleaning checklists, in-room cleaning wipes and training of staff and mothers in cleaning methods. Cleaning adequacy was evaluated for 100 items (58 surfaces, 42 equipment) using quantitative bacterial surface cultures, adenosine triphosphate bioluminescence assays and fluorescent ultraviolet markers, performed at baseline (P1, October 2019), early intervention (P2, November 2019) and late intervention (P3, February 2020). Results Environmental swabs (55/300; 18.3%) yielded growth of 78 potential neonatal pathogens with Enterococci, S. marcescens, K. pneumoniae, S. aureus and A. baumannii predominating. Highest aerobic colony counts were noted from moist surfaces such as sinks, milk kitchen surfaces, humidifiers and suction tubing. The proportion of surfaces and equipment exhibiting no bacterial growth increased between phases (P1 = 49%, P2 = 66%, P3 = 69%; p = 0.007). The proportion of surfaces and equipment meeting the ATP “cleanliness” threshold (< 200 relative light units) increased over time (P1 = 40%, P2 = 54%, P3 = 65%; p = 0.002), as did the UV marker removal rate (P1 = 23%, P2 = 71%, P3 = 74%; p < 0.001). Conclusion Routine environmental cleaning of this neonatal ward was sub-optimal at baseline but improved significantly following a multimodal cleaning intervention. Involving mothers and nursing staff was key to achieving improved environmental and equipment cleaning in this resource-limited neonatal unit.


2020 ◽  
Author(s):  
Angela Dramowski ◽  
M Aucamp ◽  
A Bekker ◽  
S Pillay ◽  
K Moloto ◽  
...  

Abstract Background: Contamination of the hospital environment contributes to neonatal bacterial colonization and infection. Cleaning of hospital surfaces and equipment is seldom audited in resource-limited settings.Methods: A quasi-experimental study was conducted to assess the impact of a multimodal cleaning intervention (NeoCLEAN) for surfaces and equipment in a 30-bed neonatal ward. The intervention included cleaning audits with feedback, cleaning checklists, in-room cleaning wipes and training of staff and mothers in cleaning methods. Cleaning adequacy was evaluated for 100 items (58 surfaces, 42 equipment) using quantitative bacterial surface cultures, adenosine triphosphate (ATP) bioluminescence assays and fluorescent ultraviolet (UV) markers, performed at baseline (P1, October 2019), early intervention (P2, November 2019) and late intervention (P3, February 2020). Results: Environmental swabs (55/300; 18.3%) yielded growth of 78 potential neonatal pathogens with Enterococci, S. marcescens, K. pneumoniae, S. aureus and A. baumannii predominating. Highest aerobic colony counts were noted from moist surfaces such as sinks, milk kitchen surfaces, humidifiers and suction tubing. The proportion of surfaces and equipment exhibiting no bacterial growth increased between phases (P1=49%, P2=66%, P3=69%; p=0.007). The proportion of surfaces and equipment meeting the ATP “cleanliness” threshold (<200 relative light units) increased over time (P1=40%, P2=54%, P3=65%; p=0.002), as did the UV marker removal rate (P1=23%, P2=71%, P3=74%; p<0.001).Conclusion: Routine environmental cleaning of this neonatal ward was sub-optimal at baseline but improved significantly following a multimodal cleaning intervention. Involving mothers and nursing staff was key to achieving improved environmental and equipment cleaning in this resource-limited neonatal unit.


Author(s):  
Rathika Krishnasamy

Background: The rate of multidrug-resistant organisms (MDRO) colonisation in dialysis populations has increased over time. This study aimed to assess the effect of contact precautions and isolation on quality of life and mood for haemodialysis (HD) patients colonised with MDRO. Methods: Patients undergoing facility HD completed the Kidney Disease Quality of Life (KDQOL–SFTM), Beck Depression Inventory (BDI) and Personal Wellbeing-Index Adult (PWI-A). Patients colonised with MDRO were case-matched by age and gender with patients not colonised. Results: A total of 16 MDRO-colonised patients were matched with 16 controls. Groups were well matched for demographics and co-morbidities, other than a trend for older dialysis vintage in the MDRO group [7.2 years (interquartile range 4.6–10.0) compared to 3.2 (1.4–7.6) years, p=0.05]. Comparing MDRO-positive with negative patients, physical (30.5±10.7 vs. 34.6±7.3; p=0.2) and mental (46.5±11.2 vs. 48.5±12.5; p = 0.6) composite scores were not different between groups. The MDRO group reported poorer sleep quality (p=0.01) and sleep patterns (p=0.05), and lower social function (p=0.02). BDI scores were similar (MDRO-positive 10(3.5–21.0) vs. MDRO-negative 12(6.5–16.0), p=0.6). PWI-A scores were also similar in both groups; however, MDRO patients reported lower scores for “feeling safe”, p=0.03. Conclusion: While overall scores of quality of life and depression were similar between groups, the MDRO group reported poorer outcomes in sleep and social function. A larger cohort and qualitative interviews may give more detail of the impact of contact precautions and isolation on HD patients. The necessity for contact precautions for different MDRO needs consideration.


2021 ◽  
pp. bmjsrh-2020-200962
Author(s):  
Kristina Gemzell-Danielsson ◽  
Ali Kubba ◽  
Cecilia Caetano ◽  
Thomas Faustmann ◽  
Eeva Lukkari-Lax ◽  
...  

Universal access to sexual and reproductive health services is essential to facilitate the empowerment of women and achievement of gender equality. Increasing access to modern methods of contraception can reduce the incidence of unplanned pregnancy and decrease maternal mortality. Long-acting reversible contraceptives (LARCs) offer high contraceptive efficacy as well as cost-efficacy, providing benefits for both women and healthcare systems. The levonorgestrel-releasing intrauterine system (LNG-IUS) first became available in 1990 with the introduction of Mirena (LNG-IUS 20), a highly effective contraceptive which can reduce menstrual blood loss and provide other therapeutic benefits. The impact of the LNG-IUS on society has been wide ranging, including decreasing the need for abortion, reducing the number of surgical sterilisation procedures performed, as well as reducing the number of hysterectomies carried out for issues such as heavy menstrual bleeding (HMB). In the context of the COVID-19 pandemic, Mirena can provide a treatment option for women with gynaecological issues such as HMB without organic pathology, minimising exposure to the hospital environment and reducing waiting times for surgical appointments. Looking to the future, research and development in the field of the LNG-IUS continues to expand our understanding of these contraceptives in clinical practice and offers the potential to further expand the choices available to women, allowing them to select the option that best meets their needs.


2020 ◽  
Vol 41 (S1) ◽  
pp. s66-s67
Author(s):  
Gabrielle M. Gussin ◽  
Ken Kleinman ◽  
Raveena D. Singh ◽  
Raheeb Saavedra ◽  
Lauren Heim ◽  
...  

Background: Addressing the high burden of multidrug-resistant organisms (MDROs) in nursing homes is a public health priority. High interfacility transmission may be attributed to inadequate infection prevention practices, shared living spaces, and frequent care needs. We assessed the contribution of roommates to the likelihood of MDRO carriage in nursing homes. Methods: We performed a secondary analysis of the SHIELD OC (Shared Healthcare Intervention to Eliminate Life-threatening Dissemination of MDROs in Orange County, CA) Project, a CDC-funded regional decolonization intervention to reduce MDROs among 38 regional facilities (18 nursing homes, 3 long-term acute-care hospitals, and 17 hospitals). Decolonization in participating nursing homes involved routine chlorhexidine bathing plus nasal iodophor (Monday through Friday, twice daily every other week) from April 2017 through July 2019. MDRO point-prevalence assessments involving all residents at 16 nursing homes conducted at the end of the intervention period were used to determine whether having a roommate was associated with MDRO carriage. Nares, bilateral axilla/groin, and perirectal swabs were processed for methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococcus (VRE), extended-spectrum β-lactamase (ESBL)–producing Enterobacteriaceae, and carbapenem-resistant Enterobacteriaceae (CRE). Generalized linear mixed models assessed the impact of maximum room occupancy on MDRO prevalence when clustering by room and hallway, and adjusting for the following factors: nursing home facility, age, gender, length-of-stay at time of swabbing, bedbound status, known MDRO history, and presence of urinary or gastrointestinal devices. CRE models were not run due to low counts. Results: During the intervention phase, 1,451 residents were sampled across 16 nursing homes. Overall MDRO prevalence was 49%. In multivariable models, we detected a significant increasing association of maximum room occupants and MDRO carriage for MRSA but not other MDROs. For MRSA, the adjusted odds ratios for quadruple-, triple-, and double-occupancy rooms were 3.5, 3.6, and 2.8, respectively, compared to residents in single rooms (P = .013). For VRE, these adjusted odds ratios were 0.3, 0.3, and 0.4, respectively, compared to residents in single rooms (P = NS). For ESBL, the adjusted odds ratios were 0.9, 1.1, and 1.5, respectively, compared to residents in single rooms (P = nonsignificant). Conclusions: Nursing home residents in shared rooms were more likely to harbor MRSA, suggesting MRSA transmission between roommates. Although decolonization was previously shown to reduce MDRO prevalence by 22% in SHIELD nursing homes, this strategy did not appear to prevent all MRSA transmission between roommates. Additional efforts involving high adherence hand hygiene, environmental cleaning, and judicious use of contact precautions are likely needed to reduce transmission between roommates in nursing homes.Funding: NoneDisclosures: Gabrielle M. Gussin, Stryker (Sage Products): Conducting studies in which contributed antiseptic product is provided to participating hospitals and nursing homes. Clorox: Conducting studies in which contributed antiseptic product is provided to participating hospitals and nursing homes. Medline: Conducting studies in which contributed antiseptic product is provided to participating hospitals and nursing homes. Xttrium: Conducting studies in which contributed antiseptic product is provided to participating hospitals and nursing homes.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 943
Author(s):  
Santiago Grau ◽  
Sergi Hernández ◽  
Daniel Echeverría-Esnal ◽  
Alexander Almendral ◽  
Ricard Ferrer ◽  
...  

Background: Antimicrobials have been widely used during the COVID-19 pandemic. This study aimed to analyze the impact of the COVID-19 pandemic on the antimicrobial consumption of 66 hospitals in Catalonia. Methods: Adult antibacterial and antimycotic consumption was calculated as defined daily doses (DDD)/100 bed-days and DDD/100 discharges. Firstly, overall and ICU consumption in 2019 and 2020 were compared. Secondly, observed ICU 2020 consumptions were compared with non-COVID-19 2020 estimated consumptions (based on the trend from 2008–2019). Results: Overall, antibacterial consumption increased by 2.31% and 4.15% DDD/100 bed-days and DDD/100 discharges, respectively. Azithromycin (105.4% and 109.08% DDD/100 bed-days and DDD/100 discharges, respectively) and ceftriaxone (25.72% and 27.97% DDD/100 bed-days and DDD/100 discharges, respectively) mainly accounted for this finding. Likewise, antifungal consumption increased by 10.25% DDD/100 bed-days and 12.22% DDD/100 discharges, mainly due to echinocandins or amphotericin B. ICU antibacterial and antimycotic consumption decreased by 1.28% and 4.35% DDD/100 bed-days, respectively. On the contrary, antibacterial and antifungal use, expressed in DDD/100 discharges, increased by 23.42% and 19.58%. Azithromycin (275.09%), ceftriaxone (55.11%), cefepime (106.35%), vancomycin (29.81%), linezolid (31.28%), amphotericin B (87.98%), and voriconazole (96.17%) use changed the most. Observed consumption of amphotericin B, azithromycin, caspofungin, ceftriaxone, vancomycin, and voriconazole were higher than estimated values. Conclusions: The consumption indicators for most antimicrobials deviated from the expected trend pattern. A worrisome increase in antibacterial and antifungal consumption was observed in ICUs in Catalonia.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Laura Ruiz-Ripa ◽  
Carmen Simón ◽  
Sara Ceballos ◽  
Carmelo Ortega ◽  
Myriam Zarazaga ◽  
...  

Abstract Background Staphylococcus pseudintermedius (SP) and Staphylococcus aureus (SA) are common colonizers of companion animals, but they are also considered opportunistic pathogens, causing diseases of diverse severity. This study focused on the identification and characterization of 33 coagulase-positive staphylococci isolated from diseased pets (28 dogs and five cats) during 2009–2011 in a veterinary hospital in Spain in order to stablish the circulating lineages and their antimicrobial resistance profile. Results Twenty-eight isolates were identified as SP and five as SA. Nine methicillin-resistant (MR) isolates (27%) carrying the mecA gene were detected (eight MRSP and one MRSA). The 55% of SP and SA isolates were multidrug-resistant (MDR). MRSP strains were typed as ST71-agrIII-SCCmecII/III-(PFGE) A (n=5), ST68-agrIV-SCCmecV-B1/B2 (n=2), and ST258-agrII-SCCmecIV-C (n=1). SP isolates showed resistance to the following antimicrobials [percentage of resistant isolates/resistance genes]: penicillin [82/blaZ], oxacillin [29/mecA] erythromycin/clindamycin [43/erm(B)], aminoglycosides [18–46/aacA-aphD, aphA3, aadE], tetracycline [71/tet(M), tet(K)], ciprofloxacin [29], chloramphenicol [29/catpC221], and trimethoprim-sulfamethoxazole [50/dfrG, dfrK]. The dfrK gene was revealed as part of the radC-integrated Tn559 in two SP isolates. Virulence genes detected among SP isolates were as follow [percentage of isolates]: siet [100], se-int [100], lukS/F-I [100], seccanine [7], and expB [7]. The single MRSA-mecA detected was typed as t011-ST398/CC398-agrI-SCCmecV and was MDR. The methicillin-susceptible SA isolates were typed as t045-ST5/CC5 (n=2), t10576-ST1660 (n=1), and t005-ST22/CC22 (n=1); the t005-ST22 feline isolate was PVL-positive and the two t045-ST45 isolates were ascribed to Immune Evasion Cluster (IEC) type F. Moreover, the t10576-ST1660 isolate, of potential equine origin, harbored the lukPQ and scneq genes. According to animal clinical history and data records, several strains seem to have been acquired from different sources of the hospital environment, while some SA strains appeared to have a human origin. Conclusions The frequent detection of MR and MDR isolates among clinical SP and SA strains with noticeable virulence traits is of veterinary concern, implying limited treatment options available. This is the first description of MRSA-ST398 and MRSP-ST68 in pets in Spain, as well the first report of the dfrK-carrying Tn559 in SP. This evidences that current transmissible lineages with mobilizable resistomes have been circulating as causative agents of infections among pets for years.


Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 639
Author(s):  
Evgenia Chezganova ◽  
Olga Efimova ◽  
Vera Sakharova ◽  
Anna Efimova ◽  
Sergey Sozinov ◽  
...  

Most healthcare-associated infections (HCAIs) develop due to the colonisation of patients and healthcare workers by multidrug-resistant organisms (MDRO). Here, we investigated whether the particulate matter from the ventilation systems (Vent-PM) of health facilities can harbour MDRO and other microbes, thereby acting as a potential reservoir of HCAIs. Dust samples collected in the ventilation grilles and adjacent air ducts underwent a detailed analysis of physicochemical properties and biodiversity. All Vent-PM samples included ultrafine PM capable of reaching the alveoli. Strikingly, >70% of Vent-PM samples were contaminated, mostly by viruses (>15%) or multidrug-resistant and biofilm-producing bacterial strains (60% and 48% of all bacteria-contaminated specimens, respectively). Total viable count at 1 m from the ventilation grilles was significantly increased after opening doors and windows, indicating an association between air flow and bacterial contamination. Both chemical and microbial compositions of Vent-PM considerably differed across surgical vs. non-surgical and intensive vs. elective care units and between health facilities located in coal and chemical districts. Reduced diversity among MDRO and increased prevalence ratio in multidrug-resistant to the total Enterococcus spp. in Vent-PM testified to the evolving antibiotic resistance. In conclusion, we suggest Vent-PM as a previously underestimated reservoir of HCAI-causing pathogens in the hospital environment.


Sign in / Sign up

Export Citation Format

Share Document