Temporally resolved measurements of heavy, rigid fibre translation and rotation in nearly homogeneous isotropic turbulence

2017 ◽  
Vol 814 ◽  
pp. 42-68 ◽  
Author(s):  
L. Sabban ◽  
A. Cohen ◽  
R. van Hout

A two orthogonal view, holographic cinematography system (volume of$17\times 17\times 17~\text{mm}^{3}$) was used to measure three-dimensional fibre translational velocities, orientations and rotation rates in near homogeneous isotropic air turbulence (HIT). Flow characteristics were determined from temporally resolved particle image velocimetry measurements. Two sets of rigid, nylon fibres having the same nominal length (0.5 mm) but different diameters (13.7 and$19.1~\unicode[STIX]{x03BC}\text{m}$), were released in near HIT at a Taylor microscale Reynolds number of$Re_{\unicode[STIX]{x1D706}}\approx 130$and tracked at more than five times the Kolmogorov frequency. The ratio of fibre length to the Kolmogorov length scale was 2.8 and the two sets were characterized by Stokes numbers of 1.35 and 2.44, respectively. As a result of increased inertia, the probability density functions (PDFs) of the fluctuating fibre translational velocities were narrower than the ones of the air and the fibre velocity autocorrelations decreased at a decreasing rate. While fibre orientations in the cameras’ frame of reference were random as a result of the strong turbulence, it was shown that fibres align with the flow to minimize drag. PDFs of the fibre rotation rates indicated the occurrence of extreme rotation rate events. Furthermore, increasing inertia lowered the normalized, mean squared fibre rotation rates in comparison to results obtained for neutrally buoyant fibres having the same aspect ratio and including the effect of preferential alignment. The present results compare well to direct numerical simulations including the effect of fibre inertia.

2021 ◽  
Vol 62 (5) ◽  
Author(s):  
M. E. Morsy ◽  
J. Yang

Abstract Particle image velocimetry (PIV) has become a popular non-intrusive tool for measuring various types of flows. However, when measuring three-dimensional flows with two-dimensional (2D) PIV, there are some uncertainties in the measured velocity field due to out-of-plane motion, which might alter turbulence statistics and distort the overall flow characteristics. In the present study, three different turbulence models are employed and compared. Mean and fluctuating fields obtained by three-dimensional computational fluid dynamics modeling are compared to experimental data. Turbulence statistics such as integral length scale, Taylor microscale, Kolmogorov scale, turbulence kinetic energy, dissipation rate, and velocity correlations are calculated at different experimental conditions (i.e., pressure, temperature, fan speed, etc.). A reasonably isotropic and homogeneous turbulence with large turbulence intensities is achieved in the central region extending to almost 45 mm radius. This radius decreases with increasing the initial pressure. The influence of the third dimension velocity component on the measured characteristics is negligible. This is a result of the axisymmetric features of the flow pattern in the current vessel. The results prove that the present vessel can be conveniently adopted for several turbulent combustion studies including mainly the determination of turbulent burning velocity for gaseous premixed flames in nearly homogeneous isotropic turbulence. Graphic abstract


2017 ◽  
Vol 815 ◽  
pp. 199-222 ◽  
Author(s):  
Ankur D. Bordoloi ◽  
Evan Variano

The rotational kinematics of inertial cylinders in homogeneous isotropic turbulence is investigated via laboratory experiments. The effects of particle size and shape on rotation statistics are measured for near-neutrally buoyant particles whose sizes are within the inertial subrange of turbulence. To examine the effects of particle size, three right-circular cylinders (aspect ratio $\unicode[STIX]{x1D706}=1$) are considered, with size $d_{eq}=16\unicode[STIX]{x1D702}$, $27\unicode[STIX]{x1D702}$ and $67\unicode[STIX]{x1D702}$. Here, $d_{eq}$ is the diameter of a sphere whose volume is equal to that of the particle and $\unicode[STIX]{x1D702}$ is the Kolmogorov length scale. Results show that the variance of the particle rotation rate follows a $-4/3$ power-law scaling with respect to $d_{eq}$. To examine the effect of particle shape, two cylinders with identical volumes and different aspect ratios ($\unicode[STIX]{x1D706}=1$ and $\unicode[STIX]{x1D706}=4$) are measured. Their motion also scales with $d_{eq}$ regardless of shape. Simultaneous measurements of orientation and rotation for $\unicode[STIX]{x1D706}=4$ particles allows a decomposition of rotation along the primary axes of each particle. This analysis shows that there is no preference for rotation about a particle’s symmetry axis, unlike the preference displayed by sub-Kolmogorov-scale particles in previous studies.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1718
Author(s):  
Hasan Zobeyer ◽  
Abul B. M. Baki ◽  
Saika Nowshin Nowrin

The flow hydrodynamics around a single cylinder differ significantly from the flow fields around two cylinders in a tandem or side-by-side arrangement. In this study, the experimental results on the mean and turbulence characteristics of flow generated by a pair of cylinders placed in tandem in an open-channel flume are presented. An acoustic Doppler velocimeter (ADV) was used to measure the instantaneous three-dimensional velocity components. This study investigated the effect of cylinder spacing at 3D, 6D, and 9D (center to center) distances on the mean and turbulent flow profiles and the distribution of near-bed shear stress behind the tandem cylinders in the plane of symmetry, where D is the cylinder diameter. The results revealed that the downstream cylinder influenced the flow development between cylinders (i.e., midstream) with 3D, 6D, and 9D spacing. However, the downstream cylinder controlled the flow recirculation length midstream for the 3D distance and showed zero interruption in the 6D and 9D distances. The peak of the turbulent metrics generally occurred near the end of the recirculation zone in all scenarios.


Author(s):  
Irsalan Arif ◽  
Hassan Iftikhar ◽  
Ali Javed

In this article design and optimization scheme of a three-dimensional bump surface for a supersonic aircraft is presented. A baseline bump and inlet duct with forward cowl lip is initially modeled in accordance with an existing bump configuration on a supersonic jet aircraft. Various design parameters for bump surface of diverterless supersonic inlet systems are identified, and design space is established using sensitivity analysis to identify the uncertainty associated with each design parameter by the one-factor-at-a-time approach. Subsequently, the designed configurations are selected by performing a three-level design of experiments using the Box–Behnken method and the numerical simulations. Surrogate modeling is carried out by the least square regression method to identify the fitness function, and optimization is performed using genetic algorithm based on pressure recovery as the objective function. The resultant optimized bump configuration demonstrates significant improvement in pressure recovery and flow characteristics as compared to baseline configuration at both supersonic and subsonic flow conditions and at design and off-design conditions. The proposed design and optimization methodology can be applied for optimizing the bump surface design of any diverterless supersonic inlet system for maximizing the intake performance.


2019 ◽  
Vol 867 ◽  
pp. 438-481 ◽  
Author(s):  
R. Watteaux ◽  
G. Sardina ◽  
L. Brandt ◽  
D. Iudicone

We present a study of Lagrangian intermittency and its characteristic time scales. Using the concepts of flying and diving residence times above and below a given threshold in the magnitude of turbulence quantities, we infer the time spectra of the Lagrangian temporal fluctuations of dissipation, acceleration and enstrophy by means of a direct numerical simulation in homogeneous and isotropic turbulence. We then relate these time scales, first, to the presence of extreme events in turbulence and, second, to the local flow characteristics. Analyses confirm the existence in turbulent quantities of holes mirroring bursts, both of which are at the core of what constitutes Lagrangian intermittency. It is shown that holes are associated with quiescent laminar regions of the flow. Moreover, Lagrangian holes occur over few Kolmogorov time scales while Lagrangian bursts happen over longer periods scaling with the global decorrelation time scale, hence showing that loss of the history of the turbulence quantities along particle trajectories in turbulence is not continuous. Such a characteristic partially explains why current Lagrangian stochastic models fail at reproducing our results. More generally, the Lagrangian dataset of residence times shown here represents another manner for qualifying the accuracy of models. We also deliver a theoretical approximation of mean residence times, which highlights the importance of the correlation between turbulence quantities and their time derivatives in setting temporal statistics. Finally, whether in a hole or a burst, the straining structure along particle trajectories always evolves self-similarly (in a statistical sense) from shearless two-dimensional to shear bi-axial configurations. We speculate that this latter configuration represents the optimum manner to dissipate locally the available energy.


2005 ◽  
Author(s):  
Balaji Gopalan ◽  
Edwin Malkiel ◽  
Jian Sheng ◽  
Joseph Katz

High-speed in-line digital holographic cinematography was used to investigate the diffusion of droplets in locally isotropic turbulence. Droplets of diesel fuel (0.3–0.9mm diameter, specific gravity of 0.85) were injected into a 37×37×37mm3 sample volume located in the center of a 160-liter tank. The turbulence was generated by 4 spinning grids, located symmetrically in the corners of the tank, and was characterized prior to the experiments. The sample volume was back illuminated with two perpendicular collimated beams of coherent laser light and time series of in-line holograms were recorded with two high-speed digital cameras at 500 frames/sec. Numerical reconstruction generated a time series of high-resolution images of the droplets throughout the sample volume. We developed an algorithm for automatically detecting the droplet trajectories from each view, for matching the two views to obtain the three-dimensional tracks, and for calculating the time history of velocity. We also measured the mean fluid motion using 2-D PIV. The data enabled us to calculate the Lagrangian velocity autocorrelation function.


Author(s):  
P. Puddu

The three-dimensional viscous flow characteristics and the complex vortex system downstream of the rotor of an industrial exial fan have been determined by an experimental investigation using hot-wire anemometer. Single-wire slanted and straight type probes have been rotated about the probe axis using a computer controlled stepper motor. Measurements have been taken at four planes behind the blade trailing edge. The results show the characteristics of the relative flow as velocity components, secondary flow and kinetic energy defect. Turbulence intensity and Reynolds stress components in the leakage vortex area are also presented. The evolution of the leakage vortex flow during the decay process has also been evaluated in terms of dimension, position and intensity.


2017 ◽  
Vol 829 ◽  
pp. 328-344 ◽  
Author(s):  
V. D. Borisevich ◽  
E. P. Potanin ◽  
J. Whichello

A model of a laminar viscous conducting flow, near a dielectric disc in a uniform magnetic field and in the presence of external rotation, is considered, where there is a uniform suction and an axial temperature gradient between the flow and the disc’s surface. It is assumed that the parameters of the suction or the magnetohydrodynamic (MHD) interaction are such that the nonlinear inertial terms, related to the circulation flow, are negligible in the differential equations of the MHD boundary layer on a rotating disc. Analysis of the motion and energy equations, taking the dependence of density on temperature into account, is carried out using the Dorodnitsyn transformation. The exact analytical solution for the boundary layer and heat transfer equations is obtained and analysed, neglecting the viscous and Joule dissipation. The dependence of the flow characteristics in the boundary layer on the rate of suction and the magnetic field induction is studied. It is shown that the direction of the radial flow in the boundary layer on a disc can be changed, not only by variation of the ratio between the angular velocities in the external flow and the boundary layer, but also by changing the ratio of the temperatures in these two flows, as well as by varying the hydrodynamic Prandtl number. The approximate calculation of a three-dimensional flow in a rotating cylinder with a braking disc (or lid) is carried out, demonstrating that a magnetic field slows the circulation velocity in a rotating cylinder.


Sign in / Sign up

Export Citation Format

Share Document