Numerical investigation of multiple-bubble behaviour and induced pressure in a megasonic field

2017 ◽  
Vol 818 ◽  
pp. 562-594 ◽  
Author(s):  
N. Ochiai ◽  
J. Ishimoto

Clarifying the mechanism of particle removal by megasonic cleaning and multiple-bubble dynamics in megasonic fields is essential for removing contaminant particles during nanodevice cleaning without pattern damage. In particular, the effect of the interaction of multiple bubbles on bubble-collapse behaviour and impulsive pressure induced by bubble collapse should also be discussed. In this study, a compressible locally homogeneous model of a gas–liquid two-phase medium is used to numerically analyse the multiple-bubble behaviour in a megasonic field. The numerical results indicate that, for bubbles with the same equilibrium radius, the natural frequency of the bubble decreases, and bubbles with smaller equilibrium radii resonate with the megasonic wave as the number of bubbles increases. Therefore, the equilibrium radius of bubbles showing maximum wall pressure decreases with an increasing number of bubbles. The increase in bubble number also results in chain collapse, inducing high wall pressure. The effect of the configuration of bubbles is discussed, and the bubble–bubble interaction in the concentric distribution makes a greater contribution to the decrease in the natural frequency of bubbles than the interaction in the straight distribution.

2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Masoud Khojasteh-Manesh ◽  
Miralam Mahdi

In the present study, cavitation erosion is investigated by implementing an Eulerian–Lagrangian approach. Three-dimensional two-phase flow is simulated in a microscale nozzle using Reynolds-averaged Navier–Stokes (RANS) solver along with realizable k−ε turbulence model and Schnerr–Sauer cavitation model. The numerical results are in agreement with experimental observations. A modified form of Rayleigh–Plesset–Keller–Herring equation along with bubble motion equation is utilized to simulate bubble dynamics. Average values of mixture properties over bubble surface are used instead of bubble-center values in order to account for nonuniformities around the bubble. A one-way coupling method is used between Lagrangian analysis and RANS solution. The impact pressure resulted from bubble collapse is calculated for evaluation of erosion in diesel and soy methyl ester (SME) biodiesel in different situations. The results show that the initial size of the bubbles is an important factor for determining the intensity of erosion. So, the bubbles erosive power increases when their initial radius increases. It is also found that the intensity of erosion in diesel is much higher than that of biodiesel and this is because of the differences in fuels properties, especially in viscosity and vapor pressure. The effect of bubbles initial position on erosion intensity is also investigated in this study, and it is found that bubbles with the highest distance from sheet cavity termination have the highest contribution in erosion rate.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yingyu Chen ◽  
Xiongliang Yao ◽  
Xiongwei Cui

The bubble dynamics behaviors and the pressure in the wall center are investigated through experimental method and numerical study. In the experiment, the dynamics of an underwater explosion (UNDEX) bubble beneath a rigid wall are captured by high-speed camera and the wall pressure in the wall center is measured by pressure transducer. To reveal the process and mechanism of the pressure on a rigid wall during the first bubble collapse, numerical studies based on boundary element method (BIM) are applied. Numerical results with two different stand-off parameters (γ=0.38 and γ=0.90) show excellent agreement with experiment measurements and observations. According to the experimental and the numerical results, we can conclude that the first peak is caused by the reentrant jet impact and the following splashing effect enlarged the duration of the first jet impact. When γ=0.38, the splashing jet has a strong impact on the minimum volume bubble, a number of tiny bubbles, formed like bubble ring, are created and collapse more rapidly owing to the surrounding high pressure and emit multi shock waves. When γ=0.90, the pressure field around the bubble is low enough only a weak rebounding bubble peak occurs.


Author(s):  
Arvind Jayaprakash ◽  
Sowmitra Singh ◽  
Georges Chahine

The dynamics of a primary relatively large bubble in a water mixture including very fine bubbles is investigated experimentally and the results are provided to several parallel on-going analytical and numerical approaches. The main/primary bubble is produced by an underwater spark discharge from two concentric electrodes placed in the bubbly medium, which is generated using electrolysis. A grid of thin perpendicular wires is used to generate bubble distributions of varying intensities. The size of the main bubble is controlled by the discharge voltage, the capacitors size, and the pressure imposed in the container. The size and concentration of the fine bubbles can be controlled by the electrolysis voltage, the length, diameter, and type of the wires, and also by the pressure imposed in the container. This enables parametric study of the factors controlling the dynamics of the primary bubble and development of relationships between the bubble characteristic quantities such as maximum bubble radius and bubble period and the characteristics of the surrounding two-phase medium: micro bubble sizes and void fraction. The dynamics of the main bubble and the mixture is observed using high speed video photography. The void fraction/density of the bubbly mixture in the fluid domain is measured as a function of time and space using image analysis of the high speed movies. The interaction between the primary bubble and the bubbly medium is analyzed using both field pressure measurements and high-speed videography. Parameters such as the primary bubble energy and the bubble mixture density (void fraction) are varied, and their effects studied. The experimental data is then compared to simple compressible equations employed for spherical bubbles including a modified Gilmore Equation. Suggestions for improvement of the modeling are then presented.


2009 ◽  
Vol 629 ◽  
pp. 231-262 ◽  
Author(s):  
ERIC JOHNSEN ◽  
TIM COLONIUS

A high-order accurate shock- and interface-capturing scheme is used to simulate the collapse of a gas bubble in water. In order to better understand the damage caused by collapsing bubbles, the dynamics of the shock-induced and Rayleigh collapse of a bubble near a planar rigid surface and in a free field are analysed. Collapse times, bubble displacements, interfacial velocities and surface pressures are quantified as a function of the pressure ratio driving the collapse and of the initial bubble stand-off distance from the wall; these quantities are compared to the available theory and experiments and show good agreement with the data for both the bubble dynamics and the propagation of the shock emitted upon the collapse. Non-spherical collapse involves the formation of a re-entrant jet directed towards the wall or in the direction of propagation of the incoming shock. In shock-induced collapse, very high jet velocities can be achieved, and the finite time for shock propagation through the bubble may be non-negligible compared to the collapse time for the pressure ratios of interest. Several types of shock waves are generated during the collapse, including precursor and water-hammer shocks that arise from the re-entrant jet formation and its impact upon the distal side of the bubble, respectively. The water-hammer shock can generate very high pressures on the wall, far exceeding those from the incident shock. The potential damage to the neighbouring surface is quantified by measuring the wall pressure. The range of stand-off distances and the surface area for which amplification of the incident shock due to bubble collapse occurs is determined.


2018 ◽  
Vol 846 ◽  
pp. 916-943 ◽  
Author(s):  
Qingyun Zeng ◽  
Silvestre Roberto Gonzalez-Avila ◽  
Sophie Ten Voorde ◽  
Claus-Dieter Ohl

Liquid jetting and fragmentation are important in many industrial and medical applications. Here, we study the jetting from the surface of single liquid droplets undergoing internal volume oscillations. This is accomplished by an explosively expanding and collapsing vapour bubble within the droplet. We observe jets emerging from the droplet surface, which pinch off into finer secondary droplets. The jetting is excited by the spherical Rayleigh–Taylor instability where the radial acceleration is due to the oscillation of an internal bubble. We study this jetting and the effect of fluid viscosity experimentally and numerically. Experiments are carried out by levitating the droplet in an acoustic trap and generating a laser-induced cavitation bubble near the centre of the droplet. On the simulation side, the volume of fluid method (OpenFOAM) solves the compressible Navier–Stokes equations while accounting for surface tension and viscosity. Both two-dimensional (2-D) axisymmetric and 3-D simulations are performed and show good agreement with each other and the experimental observation. While the axisymmetric simulation reveals how the bubble dynamics results destabilizes the interface, only the 3-D simulation computes the geometrically correct slender jets. Overall, experiments and simulations show good agreement for the bubble dynamics, the onset of disturbances and the rapid ejection of filaments after bubble collapse. Additionally, an analytic model for the droplet surface perturbation growth is developed based on the spherical Rayleigh–Taylor instability analysis, which allows us to evaluate the surface stability over a large parameter space. The analytic model predicts correctly the onset of jetting as a function of Reynolds number and normalized internal bubble energy.


Author(s):  
Roman Ivanovitch Savonov

This work presents the simulation of the internal flow in a swirl atomizer. The geometry of the atomizer is calculated by analytical equations used in engineering. The numerical simulation of the two-phase flow is performed by using two equations k-ε turbulence model. The fluids are presented as two-fluid homogeneous model. The interface between two phases is calculated by free surface model. The distribution fields of the axial and tangential velocities, pressures and air core are obtained. The aim of this work is to compare the results obtained by numerical simulation with ones obtained analytically. Also, to study the internal fluids flow inside the atomizer.


2012 ◽  
Vol 195 ◽  
pp. 169-172
Author(s):  
Bong Kyun Kang ◽  
Ji Hyun Jeong ◽  
Min Su Kim ◽  
Hong Seong Sohn ◽  
Ahmed A. Busnaina ◽  
...  

As the semiconductor manufacturing technology for ultra-high integration devices continue to shrink beyond 32 nm, stringent measures have to be taken to get damage free patterns during the cleaning process. The patterns are no longer cleaned with the megasonic (MS) irradiation in the advanced device node because of severe pattern damages caused by cleaning. Recently, several investigations are carried out to control the cavitation effects of megasonic to reduce the pattern damages. The mechanism of damage caused by an unstable acoustic bubble motion was mainly attributed to the high sound pressure associated with violent bubble collapse [1]. In order to characterize the dominant factors affecting the cavitation, MS cleaning was conducted with various dissolved gas concentrations in water. It was reported that the cavitation phenomena relating to particle removal efficiency (PRE) and pattern damage were considerably changed with the addition of a specific gas [2]. This changing behavior may be due to the difference in the physical properties of dissolved gases associated with acoustic bubble growth rate as a function of their concentration. In particular, cavitation effects induced during MS cleaning was controlled by adjusting the acoustic bubble growth rate. Also the change of bubble growth rate is well explained by both rectified diffusion for single bubble and bubble coalescence for multi-bubble, respectively. Similarly, it is well-known that surface active solute (SAS) in the ultrasound field plays an important role in controlling the cavitation effects. A detailed explanation of the acoustic bubble growth rate, cavitation threshold and their relationship with various types of SAS and concentration of biomedical and chemical reactions perspective have been reported elsewhere [3,4]. Their studies demonstrated that the change of cavitation effects depends not only on the chain length of alcohol in the solution but also on the physical properties such as surface tension and viscosity of SAS solutions.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Sandor I. Bernad ◽  
Romeo Susan-Resiga

The paper presents a numerical simulation and analysis of the flow inside a poppet valve. First, the single-phase (liquid) flow is investigated, and an original model is introduced for quantitatively describing the vortex flow. Since an atmospheric outlet pressure produces large negative absolute pressure regions, a two-phase (cavitating) flow analysis is also performed. Both pressure and density distributions inside the cavity are presented, and a comparison with the liquid flow results is performed. It is found that if one defines the cavity radius such that up to this radius the pressure is no larger than the vaporization pressure, then both liquid and cavitating flow models predict the cavity extent. The current effort is based on the application of the recently developed full cavitation model that utilizes the modified Rayleigh-Plesset equations for bubble dynamics.


Author(s):  
Calvin H. Li ◽  
Ting Li ◽  
Brian Kanney

An experimental study of the pool boiling two-phase heat transfer on a sintered Cu microparticle porous structure module surface is conducted. Enhanced heat transfer capacity of this module surface has been reported, and the boiling characteristics have been investigated. The bubble dynamics and nucleate size distribution have been compared to the theoretical predictions, and the speculated mechanisms have been discussed.


Sign in / Sign up

Export Citation Format

Share Document