Two tandem cylinders of different diameters in cross-flow: effect of an upstream cylinder on wake dynamics

2017 ◽  
Vol 836 ◽  
pp. 5-42 ◽  
Author(s):  
Longjun Wang ◽  
Md. Mahbub Alam ◽  
Yu Zhou

This work aims to provide a systematic experimental study on the wake of two tandem cylinders of unequal diameters. The fluid dynamics around a circular cylinder of diameter $D$ placed in the wake of another circular cylinder with a smaller diameter of $d$ is investigated, including the time-mean drag coefficient ($C_{D}$), the fluctuating drag and lift coefficients ($C_{D}^{\prime }$ and $C_{L}^{\prime }$), the Strouhal number ($St$) and the flow structures. The Reynolds number based on $D$ is kept constant at $4.27\times 10^{4}$. The ratios $d/D$ and $L/d$ vary from 0.2 to 1.0 and 1.0 to 8.0 respectively, where $L$ is the distance from the upstream cylinder centre to the forward stagnation point of the downstream cylinder. The ratios $d/D$ and $L/d$ are found, based on extensive hotwire, particle imaging velocimetry, pressure and flow visualization measurements, to have a marked influence on the wake dynamics behind the cylinders. As such, the flow is classified into the reattachment and co-shedding flow regimes, the latter being further subdivided into the lock-in, subharmonic lock-in and no lock-in regions. It is found that the critical spacing that divides the two regimes is dictated by the upstream-cylinder vortex formation length and becomes larger for smaller $d/D$. The characteristic flow properties are documented in each regime and subdivided region, including the flow structure, $St$, wake width, vortex formation length and the lateral width between the two gap shear layers. The variations in $C_{D}$, $C_{D}^{\prime }$, $C_{L}^{\prime }$ and the pressure distribution around the downstream cylinder are connected to the flow physics.

2008 ◽  
Vol 131 (1) ◽  
Author(s):  
J. C. Hu ◽  
Y. Zhou

The wake of asymmetric bluff bodies was experimentally measured using particle imaging velocimetry, laser Doppler anemometry, load cell, hotwire, and flow visualization techniques at Re=2600–8500 based on the freestream velocity and the characteristic height of the bluff bodies. Asymmetry is produced by rounding some corners of a square cylinder and leaving others unrounded. It is found that, with increasing corner radius, the flow reversal region is expanded, and the vortex formation length is prolonged. Accordingly, the vortex shedding frequency increases and the base pressure rises, resulting in a reduction in the mean drag as well as the fluctuating drag and lift. It is further found that, while the asymmetric cross section of the cylinder causes the wake centerline to shift toward the sharp corner side of the bluff body, the wake remains globally symmetric about the shifted centerline. The near wake of asymmetric bluff bodies is characterized in detail, including the Reynolds stresses, characteristic velocity, and length scale, and is further compared with that of the symmetric ones.


2013 ◽  
Author(s):  
Bijan Sanaati ◽  
Naomi Kato

It is believed that investigations on flow around pairs of cylinders can provide a better understanding of the interference effects than the cases involving larger numbers of cylinders. Studies that deal with the dynamic responses of multiple flexible cylinders with low mass ratios and high aspect ratios are few because of the complexities in the responses. In this paper, the effects of wake interference on the dynamic responses of two pre-tensioned flexible cylinders in tandem arrangement subjected to uniform cross-flow are investigated. The analysis results of the tandem cylinders are presented and compared with an isolated flexible cylinder. Two flexible cylinders of the same size, properties, and pretensions were tested at four different centre-to-centre separation distances, namely, 2.75, 5.5, 8.25 and 11 diameters. Reynolds number range is from 1400 to 20000 (subcritical regime). The aspect ratio of the cylinders is 162 (length over diameter). Mass ratio (cylinders mass over displaced water) is 1.17. The amplitude ratio of the CF vibration of the downstream cylinder, IL deflections of both cylinders, frequency responses in both CF and inline (IL) directions were analyzed. For all the examined separation distances, the downstream cylinder does not show build-up of upper branch (within the lock-in region of the classical VIV of the isolated cylinder). The initial distance between the tandem cylinders cannot remain constant. The distance decreases with reduced velocity because of the unequal IL deflection of tandem cylinders. From the CF frequency response of the lift (transverse) force of downstream cylinder, the highest vibration amplitude at all the separation distances occurs whenever their frequencies transitioned into second modal value. The frequency responses of the upstream cylinder cannot be greatly affected by the downstream cylinder even for small separations in contrast to the downstream cylinder.


2014 ◽  
Vol 721 ◽  
pp. 199-202
Author(s):  
Zhen Xiao Bi ◽  
Zhi Han Zhu

This paper presents the calculation of hydrodynamic characteristics of two side-by-side cylinders of different diameters in three dimensional incompressible uniform cross flow by using Large-eddy simulation method based on dynamical Smagorinsky-Lilly sub-grid scale model. Solution of the three dimensional N-S equations were obtained by the finite volume method. The numerical simulation focused on investigating the characteristic of the pressure distribution (drag and lift force), vorticity field and turbulence Re=. Results shows that, the asymmetry of the time –averaged velocity distribution in the flow direction behind the two cylinders is very obvious; the frequency of eddy shedding of the small cylinder is about twice of the large one. The turbulence of cylinders is more obvious.


Author(s):  
Gustavo R. S. Assi ◽  
Peter W. Bearman

Experiments have been carried out on two-dimensional devices fitted to a rigid length of circular cylinder to investigate the efficiency of pivoting parallel plates as wake-induced vibration suppressors. Measurements are presented for a circular cylinder with low mass and damping which is free to respond in the cross-flow direction. It is shown how VIV and WIV can be practically eliminated by using free to rotate parallel plates on a pair of tandem cylinders. Unlike helical strakes, the device achieves VIV suppression with 33% drag reduction when compare to a pair of fixed tandem cylinders at the same Reynolds number. These results prove that suppressors based on parallel plates have great potential to suppress VIV and WIV of offshore structures with considerable drag reduction.


Author(s):  
Göktürk Memduh Özkan ◽  
Hüseyin Akıllı

The characteristics of the flow around a 50mm circular cylinder surrounded by a permeable outer cylinder were investigated by Particle Image Velocimetry (PIV) and flow visualization techniques in order to control the unsteady flow structure downstream of the cylinder in shallow water. The effect of outer permeable cylinder with a porosity of β = 0.4 on the flow control was studied using five different diameters; D = 60, 70, 80, 90, 100mm. Depth-averaged free stream velocity was kept constant as U = 170mm/s corresponding to a Reynolds number of Re = 8500 and the water height was adjusted to hw = 25mm throughout the study. The results clearly showed that the outer permeable cylinder significantly affects the flow structure of the inner cylinder. It was found that by the existence of outer cylinder, the frequency of unsteady vortex shedding is reduced, vortex formation region is elongated and fluctuations are attenuated which are good indications of effective flow control. Owing to the results, optimum parameters were defined and suggested for the suppression of vortex-induced vibrations on bluff bodies.


2017 ◽  
Vol 829 ◽  
pp. 621-658 ◽  
Author(s):  
Bin Qin ◽  
Md. Mahbub Alam ◽  
Yu Zhou

This paper presents a systematic study of the cross-flow-induced vibration on a spring-supported circular cylinder of diameter $D$ placed in the wake of a fixed cylinder of smaller diameter $d$. The ratios $d/D$ and $L/d$ are varied from 0.2 to 1.0 and from 1.0 to 5.5, respectively, where $L$ is the distance between the centre of the upstream cylinder to the forward stagnation point of the downstream cylinder. Extensive measurements are conducted to capture the cylinder vibration and frequency responses, surface pressure, shedding frequencies and flow fields using laser vibrometer, hot-wire, pressure scanner and particle image velocimetry techniques. Six distinct flow regimes are identified. It has been found that a violent vibration may erupt for the spring-supported cylinder, and its dependence on $d/D$ and $L/d$ is documented. A careful examination and analysis of the flow structure, along with the simultaneously captured pressure distribution around and vibration of the downstream cylinder, cast light upon the mechanisms behind this vibration and its sustainability. The roles of added mass, flow-induced damping and physical aspects in the process of initiating the vibration are discussed in detail.


2003 ◽  
Vol 125 (1) ◽  
pp. 97-108 ◽  
Author(s):  
Tsutomu Kawamura ◽  
Toshitsugu Nakao ◽  
Masanori Takahashi ◽  
Masaaki Hayashi ◽  
Kouichi Murayama ◽  
...  

Synchronized vibrations of a circular cylinder in a water cross flow at supercritical Reynolds numbers were measured. Turbulence intensities were varied to investigate the effect of the Strouhal number on the synchronization range. Self-excited vibration in the drag direction due to symmetrical vortex shedding began only when the Strouhal number was about 0.29, at a reduced velocity of 1.1. The reduced velocities at the beginning of lock-in vibrations caused by Karman vortex shedding decreased from 1.5 to 1.1 in the drag direction and from 2.7 to 2.2 in the lift direction, as the Strouhal number increased from 0.29 to 0.48.


2013 ◽  
Vol 717 ◽  
pp. 361-375 ◽  
Author(s):  
Rémi Bourguet ◽  
George Em Karniadakis ◽  
Michael S. Triantafyllou

AbstractA slender flexible body immersed in sheared cross-flow may exhibit vortex-induced vibrations (VIVs) involving a wide range of excited frequencies and structural wavenumbers. The mechanisms of broadband VIVs of a cylindrical tensioned beam of length-to-diameter aspect ratio 200 placed in shear flow, with an exponentially varying profile along the span, are investigated by means of direct numerical simulation. The Reynolds number is equal to 330 based on the maximum velocity, for comparison with previous work on narrowband vibrations in linear shear flow. The flow is found to excite the structure at a number of different locations under a condition of wake–body synchronization, or lock-in. Broadband responses are associated with a distributed occurrence of the lock-in condition along the span, as opposed to the localized lock-in regions limited to the high inflow velocity zone, reported for narrowband vibrations in sheared current. Despite the instantaneously multi-frequency nature of broadband responses, the lock-in phenomenon remains a locally mono-frequency event, since the vortex formation is generally synchronized with a single vibration frequency at a given location. The spanwise distribution of the excitation zones induces travelling structural waves moving in both directions; this contrasts with the narrowband case where the direction of propagation toward decreasing inflow velocity is preferred. A generalization of the mechanism of phase-locking between the in-line and cross-flow responses is proposed for broadband VIVs under the lock-in condition. A spanwise drift of the in-line/cross-flow phase difference is identified for the high-wavenumber vibration components; this drift is related to the strong travelling wave character of the corresponding structural waves.


2014 ◽  
Author(s):  
Wei-Wu Wu ◽  
Quan-Ming Miao ◽  
Yan-Xia Wang

This paper gives a review on VIV experimental research. A detailed introduction of the experimental study on the cross-flow vortex-induced vibration of a towed circular cylinder in CSSRC’s towing tank is presented and classical VIV phenomena are explained and analyzed in this study. However, some results which are much different from those in the classical literatures in the past few decades are observed at the same time. For example, instead of reduced velocity Ur from 5 to 8, the “lock-in” region happened in the reduced velocity ranged from 10 to 14 in our tests, where the reduced velocity is calculated by the natural frequency. The non-dimensional frequency (oscillation frequency over natural frequency) of about 1.8 in the “lock-in” region is also different from that of 1.0 in the classical literatures. Interestingly, the author found that some of the results given by Moe and Wu (1990), Sarpkaya (1995), Govardhan and Williamson (2000), Pan zhiyuan (2005) and so on, reported the similar phenomenon. Since above listed papers have the same points of view, whether can we say that the results in this paper are possible for the case of low mass ratio. To conclude that, however, many questions need to be answered. In an effort to gain a better understanding of VIV phenomenon, this paper presents results of further analysis on the test cases and parameters.


Sign in / Sign up

Export Citation Format

Share Document