Evolution of elliptic synthetic jets at low Reynolds number

2019 ◽  
Vol 868 ◽  
pp. 66-96 ◽  
Author(s):  
Xu-Dong Shi ◽  
Li-Hao Feng ◽  
Jin-Jun Wang

The influence of the nozzle aspect ratio ($AR=1$, 2 and 4), stroke length ($L_{0}=1.85$, 3.7 and 5.55) and Reynolds number ($Re=79$, 158, 316 and 632) on the behaviour of elliptic synthetic jets is studied experimentally. Laser-induced fluorescence and two-dimensional and stereoscopic particle image velocimetry are used to analyse the vortex dynamics and evolution mechanism. It is found that the fluid elements around the major axis of an elliptic vortex ring move downstream faster and tend to approach the centreline, while the fluid elements around the minor axis move downstream at a slower speed and away from the centreline, thereby resulting in the occurrence of the well-known axis-switching phenomenon for elliptic synthetic jets. During this process, a pair of arc-like vortices forms ahead of the primary vortex ring, and they are constituted by streamwise vortices in the leg part and spanwise vortices in the head part; two pairs of streamwise vortices form from the inside of the primary vortex ring and develop in the tails. The streamwise vortices are pushed away progressively from the centreline by the synthetic jet vortex rings that are formed during the subsequent periods. These additional vortical structures for non-circular synthetic jets show regular and periodic characteristics, which are quite different from the previous findings for non-circular jets. Their mutual interaction with the vortex ring causes significant changes in the topology of elliptic synthetic jets, which further results in the variation of the statistical characteristics. Increasing the aspect ratio, stroke length and Reynolds number will make the evolution of the synthetic jet become more unstable and complex. In addition, the entrainment rate of an elliptical synthetic jet is larger than that of a circular synthetic jet and it increases with the nozzle aspect ratio ($AR\leqslant 4$) and Reynolds number. It is indicated that the formation of streamwise vortices could enhance the entrainment rate. This finding provides substantial evidence for the potential application of elliptic synthetic jets for effective flow control.

Author(s):  
Michael Amitay ◽  
Florine Cannelle

The transitory behavior of an isolated synthetic (zero net mass flux) jet was investigated experimentally using PIV and hot-wire anemometry. In the present work, the synthetic jet was produced over a broad range of length- and time-scales, where three formation frequencies, f = 300, 917, and 3100Hz, several stroke lengths (between 5 and 50 times the slit width) and Reynolds numbers (between 85 and 408) were tested. The transitory behavior, following the onset of the input signal, in planes along and across the slit was measured. It was found that the time it takes the synthetic jet to become fully developed depends on the stroke length, formation frequency and Reynolds number. In general, the transients consist of four stages associated with the merging of vortices in both cross-stream and spanwise planes that grow in size, which lead to the pinch off of the leading vortex before the jet reaches its steady-state.


Author(s):  
Qingfeng Xia ◽  
Shan Zhong

In the work presented in this article, the behaviour of circular synthetic jets issuing into quiescent surrounding fluid at low Reynolds numbers is experimentally studied for potential mixing applications of synthetic jets at micro-scales or in highly viscous fluids. Sugar solutions and silicone oil are used as the flow media in order to achieve the required low Reynolds numbers. The conditions for jet instability, vortex rollup and synthetic jet formation are investigated using both flow visualisation techniques and particle image velocimetry, and the typical behaviour of synthetic jets at a Reynolds number around unity is also illustrated. The roles of Reynolds number, dimensionless stroke length and Stokes number in determining the characteristics of synthetic jets are examined and found to be largely consistent with the finding obtained at higher Reynolds numbers. Finally, a parameter map of synthetic jet flow patterns is produced based on the results from this study, which can be used to aid the choice of synthetic jet operating conditions for specific applications or anticipate if a desired vortex structure can be obtained at a given synthetic jet operating condition.


2006 ◽  
Vol 110 (1108) ◽  
pp. 385-393 ◽  
Author(s):  
M. Jabbal ◽  
J. Wu ◽  
S. Zhong

AbstractPIV measurements in the near-field region of a jet flow emanating from a round synthetic jet actuator into quiescent air were conducted over a range of operating conditions. The primary purpose of this work was to investigate the nature of synthetic jets at different operating conditions and to examine the jet flow parameters that dictate the behaviour of synthetic jet actuators. The effects of varying diaphragm displacement and oscillatory frequency for fixed actuator geometry were studied. It was observed that the characteristics of synthetic jets are largely determined by the Reynolds number and stroke length. An increase in the former is observed to increase the strength of consecutive vortex rings that compose a synthetic jet, whereas an increase in the latter results in an increase in relative vortex ring spacing and for further increases in stroke length, shedding of secondary vortices. Correlations were also made between the operating parameters and the performance parameters most effective for flow control and which therefore determine the impact of a synthetic jet on an external flow. Relations of time-averaged dimensionless mass flux, momentum flux and circulation with the jet flow conditions were established and found to widely support an analytical performance prediction model described in this paper. It is anticipated that the experimental data obtained in this study will also contribute towards providing a PIV database for macro-scale synthetic jet actuators.


Author(s):  
Rayhaan Farrelly ◽  
Alan McGuinn ◽  
Tim Persoons ◽  
Darina B. Murray

A study has been carried out to compare steady jet and synthetic jet heat transfer distributions at low Reynolds numbers. Both jets issued from a 5mm diameter orifice plate with air for the steady jet being supplied by a compressor via a plenum chamber. Tests were conducted for Reynolds numbers ranging from 1000 to 4000, and for non-dimensional surface to jet exit spacings (H/D) from 1 to 6. Dimensionless stroke length (Lo/D) for the synthetic jet was held constant at 8. A significant difference was observed between the steady and synthetic jet Nusselt numbers at low Reynolds numbers and low H/D. In comparison to steady jets, the stronger entrainment of surrounding fluid and the vigorous mixing near the impingement surface are characteristics of synthetic jets that are beneficial to heat transfer. Nonetheless, the steady jet yields higher Nusselt numbers for all test conditions.


Author(s):  
Anna A. Pavlova ◽  
Michael Amitay

Efficiency of synthetic jet impingement cooling and the mechanisms of heat removal from a constant heat flux surface were investigated experimentally. The effects of jet’s formation frequency and Reynolds number at different nozzle-to-surface distances were investigated and compared to steady jet cooling. It was found that synthetic jets are up to three times more effective than steady jets at the same Reynolds number. For smaller distances, high formation frequency (f = 1200 Hz) synthetic jets remove heat better than low frequency (f = 420 Hz) jets, whereas low frequency jets are more effective at larger distances, with an overlapping region. Using PIV, it was shown that at small distances between the synthetic jet and the heated surface, the higher formation frequency jet is associated with accumulation of vortices before they impinge on the surface. For the lower frequency jet, the wavelength between coherent structures is so large that vortex rings impinge on the surface separately.


2016 ◽  
Vol 138 (12) ◽  
Author(s):  
Spencer O. Albright ◽  
Stephen A. Solovitz

Synthetic jet actuators are used to produce net axial momentum flow without net mass flux. Through strategic application, such devices can be used for flow control, propulsive thrust, and cooling. A novel application uses a variable-diameter orifice to constrict the exiting flow, and the motion can be synchronized with the pulse of the jet. This device is examined using phase-locked particle image velocimetry (PIV), permitting investigation of the flow fields and momentum flow. When compared to fixed-diameter synthetic jets, the variable-diameter actuator produces a larger vortex ring that lingers nearer the aperture. In addition, the experiments show increased momentum when the aperture is contracted in phase with the pulsing jet, with peak levels more than twice that of a constant-diameter jet.


2015 ◽  
Vol 14 (1) ◽  
pp. 47
Author(s):  
F. Munhoz ◽  
C. Y. Y. Lee ◽  
F. L. D. Alves

Modern electronics are becoming more compact and with higher processing power, which translates into a demand for higher heat dissipation. Current electronic "coolers," which are based on the combination of fans and heat sinks, are becoming unable to provide sufficient heat dissipation since they rely primarily on generating large volumetric flowrates of air to achieve their results. As an alternative, synthetic jets are under consideration due to their known property to enhance turbulence and heat transfer. Synthetic jets are produced by the oscillation of a membrane in a sealed cavity equipped with an orifice. For this study, a numerical model of channel mounted with a heating element on one surface and a synthetic jet directed to blow along the wall was constructed on ANSYS CFX. Heat dissipation provided by the synthetic jet was analyzed with respect to changes in Reynolds number, pulsing frequency and placement of the heated element. Results were compared to a conventional technique represented by a steady channel flow of equivalent mass flow rate to the average flow induced by the synthetic jet. Results showed that the synthetic jet formed a thin layer of intense vorticity along the targeted surface with cooling greatly outperforming conventional techniques. Synthetic jet cooling was also determined to be most affected by jet velocity and Reynolds number while pulsing frequency and placement of the heated element were not as influential.


2012 ◽  
Vol 29 (1) ◽  
pp. 45-52 ◽  
Author(s):  
C.-Y. Lin ◽  
F.-B. Hsiao

AbstractThis paper experimentally studies flow separation and aerodynamic performance of a NACA633018 wing using a series of piezoelectric-driven disks, which are located at 12% chord length from the leading edge to generate a spanwise-distributed synthetic jets to excite the passing flow. The experiment is conducted in an open-type wind tunnel with Reynolds numbers (Re) of 8 × 104 and 1.2 × 105, respectively, based on the wing chord. The oscillations of the synthetic jet actuators (SJAs) disturb the neighboring passage flow on the upper surface of the wing before the laminar separation takes place. The disturbances of energy influence the downstream development of boundary layers to eliminate or reduce the separation bubble on the upper surface of the wing. Significant lift increase and drag decrease are found at the tested Reynolds number of 8 × 104 due to the actuators excitation. Furthermore, the effect of drag also reduces dominant with increasing Reynolds number, but the increase on lift is reduced with the Reynolds number increased.


Author(s):  
Djavad Kamari ◽  
Mehran Tadjfar

Synthetic jet crossing the boundary layer has been widely implemented on the airfoil’s top surface to control the flow field. Introducing a genetic algorithm coupled with artificial neural network (ANN) was used in this study to find optimum values for design parameters. Optimization was done for SD7003 airfoil at Reynolds number of 60,000 and angles of attack of 13° and 16°. URANS equations were employed to solve the flow field and k–ω SST was used as the turbulence model. The synthetic jets were implemented tangential to boundary layer (TBL). It was found that at optimum values of design parameters a significant improvement in aerodynamic coefficients by increasing lift and reducing drag can be achieved. Drag force reduction was achieved by reducing pressure drag at post stall and a significant reduction of separation zone.


Sign in / Sign up

Export Citation Format

Share Document