Simulation of Crack Propagation in Three-Point Bending Piezoelectric Beam Based on Three-Dimensional Anisotropic Piezoelectric Damage Mechanics

2011 ◽  
Vol 27 (4) ◽  
pp. 521-531 ◽  
Author(s):  
X. H. Yang ◽  
W. Z. Cao ◽  
X. B. Tian

ABSTRACTA finite element method combined with three-dimensional anisotropic piezoelectric continuum damage mechanics is presented to simulate quasi-static crack propagation behavior in piezoelectric ceramics in this paper. In this method, the three-dimensional anisotropic piezoelectric damage constitutive model is utilized for characterizing the effects of mechanical and electrical damages on the fields near the crack tip, the combined-damage from the dominant mechanical and electrical damage components is regarded as the fracture criterion, and the gradient of combined-damage is assumed to control crack growth direction. A set of numerical simulations of the midspan crack propagation in a three-point bending PZT-4 beam are performed in various loading conditions. After the numerical results are validated by comparison with the corresponding experimental ones, the effects of mechanical and electrical loads on the cracking be havior are respectively evaluated. It is found from the obtained results that mechanical and electrical loads influence on the damage fields in the vicinity of the crack-tip, as well as the crack growth rate, in a significant way. With the increment in mechanical loading, the crack growth rate obviously increases. This means that positive and negative electric fields enhance and inhibit crack propagation, respectively.

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1183
Author(s):  
Edmundo R. Sérgio ◽  
Fernando V. Antunes ◽  
Diogo M. Neto ◽  
Micael F. Borges

The fatigue crack growth (FCG) process is usually accessed through the stress intensity factor range, ΔK, which has some limitations. The cumulative plastic strain at the crack tip has provided results in good agreement with the experimental observations. Also, it allows understanding the crack tip phenomena leading to FCG. Plastic deformation inevitably leads to micro-porosity occurrence and damage accumulation, which can be evaluated with a damage model, such as Gurson–Tvergaard–Needleman (GTN). This study aims to access the influence of the GTN parameters, related to growth and nucleation of micro-voids, on the predicted crack growth rate. The results show the connection between the porosity values and the crack closure level. Although the effect of the porosity on the plastic strain, the predicted effect of the initial porosity on the predicted crack growth rate is small. The sensitivity analysis identified the nucleation amplitude and Tvergaard’s loss of strength parameter as the main factors, whose variation leads to larger changes in the crack growth rate.


2009 ◽  
Vol 417-418 ◽  
pp. 313-316 ◽  
Author(s):  
Hyun Kyu Jun ◽  
Won Hee You

Rolling contact fatigue initiated defects such as surface corrugation, head check, squat, are one of growing problems in high speed railway line. A squat is generally developed below the rail surface and grows parallel to surface until it turns down into rail. Estimation of critical crack size and crack growth rate is an essential to prevent rail from failure and develop cost effective railway maintenance strategy. In this study, we predict crack growth rate of a rail with a squat defect. For this purpose, a rail model with a squat defect is developed. Timoshenko’s beam theory is applied to calculate the global bending stress at the crack tip and Hertzian contact model is applied to calculate the local contact stresses at the surface of rail by simulating rolling over a railway wheel on a rail. Stress intensity factors are calculated from the total stress at the crack tip. Fatigue crack growth curve of 60kg rail steel is applied to calculated crack growth rate. Software to predict crack growth life through whole life cycle is developed. We expect that we can make a more cost effective rail maintenance strategy by considering the crack growth analysis for a defective rail.


2018 ◽  
Vol 165 ◽  
pp. 13013
Author(s):  
Wei Zhang ◽  
Liang Cai

In this paper, the in-situ scanning electron microscope (SEM) and optical microscopy experiments are performed to investigate the crack growth behavior under the single tensile overload. The objectives are to (i) examine the overload-induced crack growth micromechanisms, including the initial crack growth acceleration and the subsequent retardation period; (ii) investigate the effective region of single overload on crack growth rate. The specimen is a small thin Al2024-T3 plate with an edge-crack, which is loaded and observed in the SEM chamber. The very high resolution images of the crack tip are taken under the simple variable amplitude loading. Imaging analysis is performed to quantify the crack tip deformation at any time instant. Moreover, an identical specimen subjected to the same load condition is observed under optical microscope. In this testing, fine speckling is performed to promote the accuracy of digital imaging correlation (DIC). The images around the crack tip are taken at the peak loads before, during and after the single overload. After that, the evolution of local strain distribution is obtained through DIC technique. The results show that the rapid connection between the main crack and microcracks accounts for the initial crack growth acceleration. The crack closure level can be responsible for the crack growth rate during the steady growth period. Besides that, the size of retardation area is larger than the classical solution.


Author(s):  
Lei Zhao ◽  
Lianyong Xu

Creep-fatigue interaction would accelerate the crack growth behaviour and change the crack growth mode, which is different from that presenting in pure creep or fatigue regimes. In addition, the constraint ahead of crack tip affects the relationship between crack growth rate and fracture mechanics and thus affects the accuracy of the life prediction for high-temperature components containing defects. In this study, to reveal the role of constraint caused by various specimen geometries in the creep-fatigue regime, five different types of cracked specimens (including C-ring in tension CST, compact tension CT, single notch tension SENT, single notch bend SENB, middle tension MT) were employed. The crack growth and damage evolution behaviours were simulated using finite element method based on a non-linear creep-fatigue interaction damage model considering creep damage, fatigue damage and interaction damage. The expression of (Ct)avg for different specimen geometries were given. Then, the variation of crack growth behaviour with various specimen geometries under creep-fatigue conditions were analysed. CT and CST showed the highest crack growth rates, which were ten times as the lowest crack growth rates in MT. This revealed that distinctions in specimen geometry influenced the in-plane constraint level ahead of crack tip. Furthermore, a load-independent constraint parameter Q* was introduced to correlate the crack growth rate. The sequence of crack growth rate at a given value of (Ct)avg was same to the reduction of Q*, which shown a linear relation in log-log curve.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Hongliang Yang ◽  
He Xue ◽  
Fuqiang Yang ◽  
Shuai Wang

To understand the effect of cold working of welding heat-affected zone on the driving force of the crack growth and crack growth rate of stress corrosion cracking (SCC) near the welding fusion line, the finite element simulation method was used to analyze the effect of cold working on the tensile stress of the crack tip at different locations near the fusion line. On this basis, the strain rate of the crack tip in the Ford-Andresen model is replaced by the creep rate of the crack tip, and the creep rate of the crack tip is used as driving force for the crack growth of SCC. The effect of the cold working level at the heat-affected zone on the driving force of the crack growth and crack growth rate of SCC are analyzed, and driving force of the crack growth and crack growth rate of SCC after one overload was compared.


CORROSION ◽  
10.5006/2896 ◽  
2020 ◽  
Vol 76 (3) ◽  
pp. 312-323
Author(s):  
Ramgopal Thodla ◽  
Feng Gui ◽  
Colum Holtam

Fatigue crack growth rate of line pipe steels in sour environments typically exhibits a steady-state value at low frequencies. However, in highly inhibited sour environments, there is no evidence of a steady-state fatigue crack growth at low frequencies. This is likely a result of static crack growth rate at Kmax. Stable static crack growth measured under constant stress intensity factor (K) conditions in inhibited sour environments was in the range of 10−7 mm/s to 10−8 mm/s. The crack growth rate in inhibited sour environments is likely associated with crack tip processes associated with metal dissolution/film formation and associated hydrogen evolution. The results obtained were modeled based on a crack tip strain rate based approach, where the rate limiting step was the metal dissolution/FeS formation and the corresponding hydrogen generation reaction.


Author(s):  
Masumi Yoshida ◽  
Kosuke Araki ◽  
Yoichi Takeda ◽  
Susumu Nakano

Abstract Alloy 617 is a Ni-base superalloy and is a candidate material for high temperature steam piping systems and casings for advanced ultra-supercritical power generation technology because of its excellent high temperature creep strength. It is expected in the near future that the installation of variable renewable energies with large output fluctuations will increase. Therefore, adjusting the supply and demand of electricity is requested for thermal power generation. This leads to the issue of fatigue damage caused by repeated thermal stress due to the startup and shutdown procedures. It was reported that the fatigue crack growth of alloy 617 changed from transgranular to intergranular at 750°C, with a decreasing loading frequency in a steam environment. It was also indicated that the increase in the crack growth rate in lower loading frequency conditions; however, the specific acceleration mechanism governing the crack growth has not been elucidated. In this study, morphology of oxide and precipitates at fatigue crack tip region were analyzed by transmission electron microscope. All of examined crack tip were filled with oxides. Especially, the double layered oxide film was formed in the crack tip which propagated under the lower loading frequencies. In addition, unoxidized precipitates mainly consisting of Mo and Co were observed in the intergranular cracks. It was suggested that the changes in the oxidation morphologies depending on the loading frequency influenced the crack growth rate.


Author(s):  
Kokleang Vor ◽  
Catherine Gardin ◽  
Christine Sarrazin-Baudoux ◽  
Jean Petit ◽  
Claude Amzallag

The scope of this study is to investigate the effect of tensile prestrain on crack growth behavior in a 304L stainless steel. Fatigue crack propagation tests were performed on single-edge notched tension (SENT) raw specimens (0% of prestrain) and on prestrained specimens (2% and 10%). On one hand, it is found that the different levels of prestrain exhibit no significant influence on crack propagation in the high range of Stress Intensity Factor (SIF), where there is no detectable crack closure. On the other hand, a clear effect of prestrain on crack growth rate can be observed in the near threshold region where closure is detected. Thus, it can be concluded that the prestrain mainly affects the crack growth rate through its influence on the crack closure.


Sign in / Sign up

Export Citation Format

Share Document