scholarly journals A quantitative method for deriving salinity of subglacial water using ground-based transient electromagnetics

2021 ◽  
pp. 1-18
Author(s):  
Siobhan F. Killingbeck ◽  
Christine F. Dow ◽  
Martyn J. Unsworth

Abstract Liquid water can exist at temperatures well below freezing beneath glaciers and ice sheets, where subglacial water systems, fresh and saline, have been shown to host unique microbial ecosystems. Geophysical techniques sensitive to fluid-content contrasts, e.g. electromagnetics, can characterize subglacial water and its salinity. Here, we assess the ground-based transient electromagnetic (TEM) method for deriving the resistivity and salinity of subglacial water. We adapt an existing open-source Bayesian inversion algorithm, which uses independent depth constraints, to output posterior distributions of resistivity and pore fluid salinity with depth. A variety of synthetic models, including a thin (5 m), conductive (0.16 Ωm), hypersaline (147 psu) subglacial lake, are used to evaluate the TEM method for imaging under 800 m-thick ice. The study demonstrates that TEM methods can resolve conductive, saline bodies accurately using external depth constraints, for example, from radar or seismic data. The depth resolution of TEM can be limited beneath deep (>800 m), thick (>50 m) conductive, water bodies and additional constraints from passive electromagnetic (EM) methods could be used to reduce ambiguities in the TEM results. Subsequently, non-invasive active and passive EM methods could provide profound insights into remote aqueous systems under glaciers and ice sheets.

Geophysics ◽  
1986 ◽  
Vol 51 (7) ◽  
pp. 1462-1471 ◽  
Author(s):  
Brian R. Spies ◽  
Dwight E. Eggers

Problems and misunderstandings arise with the concept of apparent resistivity when the analogy between an apparent resistivity computed from geophysical observations and the true resistivity structure of the subsurface is drawn too tightly. Several definitions of apparent resistivity are available for use in electromagnetic methods; however, those most commonly used do not always exhibit the best behavior. Many of the features of the apparent resistivity curve which have been interpreted as physically significant with one definition disappear when alternative definitions are used. It is misleading to compare the detection or resolution capabilities of different field systems or configurations solely on the basis of the apparent resistivity curve. For the in‐loop transient electromagnetic (TEM) method, apparent resistivity computed from the magnetic field response displays much better behavior than that computed from the induced voltage response. A comparison of “exact” and “asymptotic” formulas for the TEM method reveals that automated schemes for distinguishing early‐time and late‐time branches are at best tenuous, and those schemes are doomed to failure for a certain class of resistivity structures (e.g., the loop size is large compared to the layer thickness). For the magnetotelluric (MT) method, apparent resistivity curves defined from the real part of the impedance exhibit much better behavior than curves based on the conventional definition that uses the magnitude of the impedance. Results of using this new definition have characteristics similar to apparent resistivity obtained from time‐domain processing.


2021 ◽  
Vol 62 (12) ◽  
pp. 1430-1439
Author(s):  
V.S. Mogilatov ◽  
V.V. Potapov ◽  
A.N. Shein ◽  
V.A. Gur’ev

Abstract —A mathematical model of the influence of the Earth’s magnetic field (the Hall effect) on results of the controlled source transient electromagnetic (TEM) method has been elaborated. For identification of this effect, we propose a schematic layout of the experimental grounded system with a pulsed loop source and signals recording by radial receive lines equally spaced relative to the loop. The 2018–2019 special field experiments were conducted in the Tatar region of the West Siberian Lowland with an aim to estimate the Hall effect contributions to the TEM method. To detect the Hall effect, transient electromagnetic responses were measured mainly by four receive lines radiating from a 500×500 m square loop. Analysis of the TEM results processing aimed at improving the signal quality and reducing the interference revealed a great similarity in signals from the radial lines, which is theoretically possible only under the Hall effect. Comparison of the field signals with the theoretical ones enabled estimation of the components caused by the Hall effect, in particular, conductivity at ~0.002 S/m.


2021 ◽  
Author(s):  
Henrik Schreiber ◽  
Saadou Oumarou Danni ◽  
Amine Touab ◽  
Fatima Abourig ◽  
Nelly Montcoudiol ◽  
...  

<p>The Chtouka plain in Morocco suffers from groundwater overexploitation and a significant increase in water salinity. In this study, a multidisciplinary approach combining water chemistry, stable isotopes of water (18O, 2H) and Transient Electromagnetic (TEM) method was used. The main objective was to identify the water salinity sources and the extension of the marine intrusion. Water samples were collected from wells and boreholes, springs, the Massa river and the main source of freshwater in the region, the Youssef Ibn Tachfine Dam. Geophysical (TEM) measurements (12 profiles comprising 83 measurement points) were carried out along the coastal zone and around the northern bank of the Massa river. The results show a spatial variability of water salinity, indicating rock-water interaction, seawater intrusion and anthropogenic influence. The interpretation of the TEM soundings allow to draw the front line of the marine intrusion in the aquifer. The results, compared to previous numerical simulations, show a significant progress of the marine intrusion into the coastal aquifer. The intrusion indeed reaches a distance of 2.5 km from the coast, far beyond models’ predictions. The local water authorities can use these results to improve their monitoring network and better assess the progress of the seawater intrusion.<br>Keywords: Water salinity, TEM geophysical method, chemical and isotopes tracers, marine intrusion</p>


2019 ◽  
Vol 19 (8) ◽  
pp. 2206-2213
Author(s):  
Mohd Firdaus Abdul Razak ◽  
Md Azlin Md Said ◽  
Ismail Abustan ◽  
Mohd Hanis Mohamad

Abstract Transient electromagnetic (TEM) sounding technology is known for its capability in detecting resistive zones, especially those associated with fresh water. Nevertheless, to date, there have been no available studies that have employed TEM for riverbank filtration (RBF) application. Therefore, this study was conducted to investigate the capability of TEM technology in profiling the subsurface of RBF areas adjacent to Sungai Perak, Kota Lama Kiri, Kuala Kangsar. A total of 27 survey points of simple rectangular loop configuration with loop area of 100 m2 (10 m × 10 m) were executed in the study area. A suite of TerraTEM equipment was used for the data acquisition process. The inversion and interpretation processes were then conducted by using the modeling program of ‘TDEM Geomodel’ and Surfer 13. The results showed four 2-D resistivity cross-section (depth–distance) profiles with their corresponding geological units. The interpretation results indicated that the subsurfaces of the study area were identified as alluvial-type soils (with a range of 10 to 40 Ωm) up to 8 m due to the presence of silt, sand and gravel. Based on the good quality results produced as well as its convenience, it is recommended that the TEM method is used for RBF exploration in future work.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 354 ◽  
Author(s):  
Roman Kaminskyj ◽  
Nataliya Shakhovska ◽  
Gregus Michal ◽  
Borys Ladanivskyy ◽  
Lidia Savkiv

The transient electromagnetic (TEM) method is a time-domain, controlled source, electromagnetic (EM) geophysical technique which is often applied to image the subsurface conductivity distributions of shallow layers due to its effectiveness and adaptability to complex site working conditions. The means for an express analysis of such experimental data in several practical cases have advantages and are suitable for use. We developed our approach for determining the approximate one-dimensional (1D) model of background conductivity based on the formal transformation of the TEM experimental data and the mathematical analysis of continuous functions. Our algorithm, which allows the 1D model’s parameters to be obtained in terms of a layer’s thickness and resistivity, widely utilizes the numerical differentiation of experimental curves as well as of transformed ones. Since the noise level increases with time in the attenuating TEM signals and differentiation even enhances it, special procedures are required to calculate the derivative values. We applied the piecewise cubic spline approximation to solve this problem. In that case, the derivatives are obtained using polynomial coefficients which are available for each node. The application of the created facilities is demonstrated using real experimental data of the TEM soundings.


1979 ◽  
Vol 23 (89) ◽  
pp. 410
Author(s):  
I. M. Whillans

Abstract Flat-surfaced subglacial lakes, such as those discovered by Oswald (1975), can form where basal sliding velocities are low. As the glacier moves onto a subglacial lake, its underside retains the shape of the vertical relief at the lake edge. Differential heat transfer from the lake into high and low points in the interface flattens the surface by extra melting of the downward projections or freezing in the high areas. A time of the order of 103 years is required to flatten the fluting, and the down-glacier part of a subglacial lake can be flat-surfaced if the glacier takes longer than some 103 years to traverse the lake. Such a slow traverse time is expected near ice-drainage divides, and it is there that flat-surfaced lakes were discovered by radar sounding.


Geophysics ◽  
2002 ◽  
Vol 67 (2) ◽  
pp. 438-447 ◽  
Author(s):  
Niels Bøie Christensen

This paper presents a fast approximate 1-D inversion algorithm for transient electromagnetic (EM) data that can be applied for all measuring configurationsand transmitter waveforms and for all field components. The inversion is based on an approximate forward mapping in the adaptive Born approximation. The generality is obtained through a separation of the forward problem into a configuration-independent part, mapping layer conductivities into apparent conductivity, and a configuration-dependent part, the half-space step response. The EM response from any waveform can then be found by a convolution with the time derivative of the waveform. The approach does not involve inherently unstable deconvolution computations or nonunique transformations, and it is about 100 times faster than ordinary nonlinear inversion. Nonlinear model responses of the models obtained through the approximate inversion fit the data typically within 5%.


Geophysics ◽  
1988 ◽  
Vol 53 (11) ◽  
pp. 1469-1478 ◽  
Author(s):  
Richard C. West ◽  
Stanley H. Ward

Borehole geophysical methods can be useful in detecting subsurface fracture zones and mineral deposits which are nearby, but not intersected by boreholes. One electrical borehole technique which can be applied to this problem is the surface‐to‐borehole transient electromagnetic (TEM) method. In this method a transmitting loop is deployed on the surface while a receiving coil is moved down a borehole. A conductive, horizontal, tabular body in a homogeneous half space was chosen to simulate a 3-D fracture zone or mineral deposit within the earth. Theoretical borehole TEM responses for several models of practical interest were computed using a direct integral‐equation formulation. The anomalous TEM response (secondary response) is the result of a complex interaction between vortex and galvanic currents within the body. Distortion of the secondary response by the conductive host does not affect the estimate of the depth to the horizontal body but it does lead to erroneous estimates of the conductivity and size of the body. Increasing the resistivity of the host decreases the host effects and increases the peak response of the body. Decreasing the separation between the body and borehole or decreasing the depth of the body increases the secondary response. The decrease in the vortex response due to the decreased coupling when a transmitting loop is offset from the body is nearly countered by an increase in the galvanic response at late times; however, this phenomenon is model‐dependent. This study indicates promise for the borehole TEM method, but the application of the technique is limited by the hardware and modest modeling capabilities presently available.


Geophysics ◽  
2002 ◽  
Vol 67 (6) ◽  
pp. 1753-1768 ◽  
Author(s):  
Yuji Mitsuhata ◽  
Toshihiro Uchida ◽  
Hiroshi Amano

Interpretation of controlled‐source electromagnetic (CSEM) data is usually based on 1‐D inversions, whereas data of direct current (dc) resistivity and magnetotelluric (MT) measurements are commonly interpreted by 2‐D inversions. We have developed an algorithm to invert frequency‐Domain vertical magnetic data generated by a grounded‐wire source for a 2‐D model of the earth—a so‐called 2.5‐D inversion. To stabilize the inversion, we adopt a smoothness constraint for the model parameters and adjust the regularization parameter objectively using a statistical criterion. A test using synthetic data from a realistic model reveals the insufficiency of only one source to recover an acceptable result. In contrast, the joint use of data generated by a left‐side source and a right‐side source dramatically improves the inversion result. We applied our inversion algorithm to a field data set, which was transformed from long‐offset transient electromagnetic (LOTEM) data acquired in a Japanese oil and gas field. As demonstrated by the synthetic data set, the inversion of the joint data set automatically converged and provided a better resultant model than that of the data generated by each source. In addition, our 2.5‐D inversion accounted for the reversals in the LOTEM measurements, which is impossible using 1‐D inversions. The shallow parts (above about 1 km depth) of the final model obtained by our 2.5‐D inversion agree well with those of a 2‐D inversion of MT data.


2013 ◽  
Vol 7 (6) ◽  
pp. 1721-1740 ◽  
Author(s):  
S. J. Livingstone ◽  
C. D. Clark ◽  
J. Woodward ◽  
J. Kingslake

Abstract. We use the Shreve hydraulic potential equation as a simplified approach to investigate potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets. We validate the method by demonstrating its ability to recall the locations of >60% of the known subglacial lakes beneath the Antarctic Ice Sheet. This is despite uncertainty in the ice-sheet bed elevation and our simplified modelling approach. However, we predict many more lakes than are observed. Hence we suggest that thousands of subglacial lakes remain to be found. Applying our technique to the Greenland Ice Sheet, where very few subglacial lakes have so far been observed, recalls 1607 potential lake locations, covering 1.2% of the bed. Our results will therefore provide suitable targets for geophysical surveys aimed at identifying lakes beneath Greenland. We also apply the technique to modelled past ice-sheet configurations and find that during deglaciation both ice sheets likely had more subglacial lakes at their beds. These lakes, inherited from past ice-sheet configurations, would not form under current surface conditions, but are able to persist, suggesting a retreating ice-sheet will have many more subglacial lakes than advancing ones. We also investigate subglacial drainage pathways of the present-day and former Greenland and Antarctic ice sheets. Key sectors of the ice sheets, such as the Siple Coast (Antarctica) and NE Greenland Ice Stream system, are suggested to have been susceptible to subglacial drainage switching. We discuss how our results impact our understanding of meltwater drainage, basal lubrication and ice-stream formation.


Sign in / Sign up

Export Citation Format

Share Document