Faunal overview of the Mud Hill locality from the early Permian Vale Formation of Taylor County, Texas

2018 ◽  
Vol 92 (6) ◽  
pp. 1092-1106
Author(s):  
Bryan M. Gee ◽  
Steven J. Rosscoe ◽  
Diane Scott ◽  
Judie Ostlien ◽  
Robert R. Reisz

AbstractThe Texas red beds represent one of the richest series of early Permian deposits in the world. In particular, the Clear Fork Group has produced a diverse assemblage of temnospondyls, early reptiles, and synapsids. However, most of this material has been sourced from the oldest member, the Arroyo Formation, and the understanding of the paleoecosystem of the younger Vale and Choza formations is less well resolved. Here we present a previously undescribed Vale locality, the first vertebrate-bearing locality from the formation to be described in detail in several decades, from near Abilene, Texas with juvenile diplocaulids, captorhinids, abundant material of rare taxa such asVaranopsand diadectids, and the first report of a recumbirostran ‘microsaur’ from the formation. This assemblage is atypical of early Permian deposits in the taxonomic and size distribution of the vertebrate fauna in comparison to other localities from the Vale Formation that preserve a greater abundance of aquatic taxa (e.g., fishes,Trimerorhachis) and synapsids (e.g.,Dimetrodon). Minimal abrasion of the elements, relative articulation and association of the specimen ofVaranops, and the paucity of aquatic taxa suggest an ephemeral pond deposit in which organisms were preserved essentially in situ. Our characterization of the locality also permits a revision and discussion of the vertebrate faunal assemblage of the Vale Formation.

2011 ◽  
Vol 12 (1) ◽  
pp. 39 ◽  
Author(s):  
Nancy L. Robertson ◽  
Jeffrey Smeenk ◽  
Jodie M. Anderson

Although all three viruses are commonly found in potatoes throughout the world, this is the first report of potato viruses from Alaska to be sequenced and molecularly analyzed for comparisons with known viruses. Accepted for publication 17 January 2011. Published 9 February 2011.


Geoderma ◽  
1983 ◽  
Vol 30 (1-4) ◽  
pp. 21-34 ◽  
Author(s):  
S. Stephan ◽  
J. Berrier ◽  
A.A. De Petre ◽  
C. Jeanson ◽  
M.J. Kooistra ◽  
...  
Keyword(s):  

Plant Disease ◽  
2020 ◽  
Author(s):  
Jian Zou ◽  
Yanhan Dong ◽  
Huizheng Wang ◽  
W. X. Liang ◽  
De Long Li

Photinia (Photinia × fraseri) is a well-known green plant that has high ornamental value and is widely distributed around the world. An outbreak of typical bud blight disease was observed between May and August in photinia in 2017 in Qingdao, China. The causal agent for this blight was subsequently isolated from symptomatic samples and identified as Nothophoma quercina based on morphological characterization and molecular analyses (ITS, LSU, RPB2 and TUB2). Results of pathogenicity tests on isolated fungi also supported the conclusion that N. quercina is the pathogen responsible for this condition. To our knowledge, this is the first report of bud blight on P. fraseri caused by N. quercina in China.


2021 ◽  
Vol 8 (12) ◽  
pp. 290
Author(s):  
Andrei Ungur ◽  
Cristina Daniela Cazan ◽  
Luciana Cătălina Panait ◽  
Marian Taulescu ◽  
Oana Maria Balmoș ◽  
...  

The World Organisation for Animal Health has listed African swine fever as the most important deadly disease in domestic swine around the world. The virus was recently brought from South-East Africa to Georgia in 2007, and it has since expanded to Russia, Eastern Europe, China, and Southeast Asia, having a devastating impact on the global swine industry and economy. In this study, we report for the first time the molecular characterization of nine African swine fever virus (ASFV) isolates obtained from domestic pigs in Mureş County, Romania. All nine Romanian samples clustered within p72 genotype II and showed 100% identity with all compared isolates from Georgia, Armenia, Russia, Azerbaijan, Ukraine, Belarus, Lithuania, and Poland. This is the first report of ASFV genotype II in the country.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
J. I. Bennetch

In a recent study of the superplastic forming (SPF) behavior of certain Al-Li-X alloys, the relative misorientation between adjacent (sub)grains proved to be an important parameter. It is well established that the most accurate way to determine misorientation across boundaries is by Kikuchi line analysis. However, the SPF study required the characterization of a large number of (sub)grains in each sample to be statistically meaningful, a very time-consuming task even for comparatively rapid Kikuchi analytical techniques.In order to circumvent this problem, an alternate, even more rapid in-situ Kikuchi technique was devised, eliminating the need for the developing of negatives and any subsequent measurements on photographic plates. All that is required is a double tilt low backlash goniometer capable of tilting ± 45° in one axis and ± 30° in the other axis. The procedure is as follows. While viewing the microscope screen, one merely tilts the specimen until a standard recognizable reference Kikuchi pattern is centered, making sure, at the same time, that the focused electron beam remains on the (sub)grain in question.


Author(s):  
Barbara Trask ◽  
Susan Allen ◽  
Anne Bergmann ◽  
Mari Christensen ◽  
Anne Fertitta ◽  
...  

Using fluorescence in situ hybridization (FISH), the positions of DNA sequences can be discretely marked with a fluorescent spot. The efficiency of marking DNA sequences of the size cloned in cosmids is 90-95%, and the fluorescent spots produced after FISH are ≈0.3 μm in diameter. Sites of two sequences can be distinguished using two-color FISH. Different reporter molecules, such as biotin or digoxigenin, are incorporated into DNA sequence probes by nick translation. These reporter molecules are labeled after hybridization with different fluorochromes, e.g., FITC and Texas Red. The development of dual band pass filters (Chromatechnology) allows these fluorochromes to be photographed simultaneously without registration shift.


Sign in / Sign up

Export Citation Format

Share Document