New Radiocarbon Data from the Paleosols of the NYíRSéG blown Sand Area, Hungary

Radiocarbon ◽  
2019 ◽  
Vol 61 (6) ◽  
pp. 1983-1995
Author(s):  
Botond Buró ◽  
József Lóki ◽  
Erika Győri ◽  
Richárd Nagy ◽  
Mihály Molnár ◽  
...  

ABSTRACTDespite many ideas about the age and processes of sand movements and paleosol formation, there are still some uncertainties in this relations in the Nyírség, eastern Hungary. The major aim of the present study was to clarify the chronology of fossil soils and blown-sand layers in the sand dunes of the Nyírség using radiocarbon (14C) dating on soil and charcoal samples. Charcoal and soil samples were collected from buried paleosols from different sand quarries for 14C dating. The bulk organic carbon content of the buried soil and charcoal pieces recovered from buried fossil soil layers allowed parallel 14C accelerator mass spectrometry dating in several cases. The new 14C results indicate paleosol development during Younger Dryas, while the preceding interstadial was assumed as a cold and dry period when only sand movement occurred in the area. Our results also confirm and support the previous assumptions, that in the Late Glacial, the first paleosol development period was during the Bølling-Allerød Interstadial. Four soil-forming periods could be determined during the Holocene (Preboreal, Boreal, Atlantic, Subatlantic). We have also indirectly identified sand movements during the Oldest Dryas, Younger Dryas, Preboreal, Boreal, and Subatlantic phase in the study area.

2006 ◽  
Vol 85 (3) ◽  
pp. 197-220 ◽  
Author(s):  
K. Kaiser ◽  
A. Barthelmes ◽  
S. Czakó Pap ◽  
A. Hilgers ◽  
W. Janke ◽  
...  

AbstractA new site with Lateglacial palaeosols covered by 0.8 - 2.4 m thick aeolian sands is presented. The buried soils were subjected to multidisciplinary analyses (pedology, micromorphology, geochronology, dendrology, palynology, macrofossils). The buried soil cover comprises a catena from relatively dry (’Nano’-Podzol, Arenosol) via moist (Histic Gleysol, Gleysol) to wet conditions (Histosol). Dry soils are similar to the so-called Usselo soil, as described from sites in NW Europe and central Poland. The buried soil surface covers ca. 3.4 km2. Pollen analyses date this surface into the late Allerød. Due to a possible contamination by younger carbon, radiocarbon dates are too young. OSL dates indicate that the covering by aeolian sands most probably occurred during the Younger Dryas. Botanical analyses enables the reconstruction of a vegetation pattern typical for the late Allerød. Large wooden remains of pine and birch were recorded.


1991 ◽  
Vol 69 (7) ◽  
pp. 1593-1599 ◽  
Author(s):  
César S. B. Costa ◽  
Ulrich Seeliger ◽  
César V. Cordazzo

We studied the effect of nutrient status and sand movement on the population biology of Panicum racemosum Spreng. over a 5-year period (1982–1986) on mobile, semifixed and fixed coastal foredune habitats in southern Brazil. The soils were deficient in nitrate, phosphate, and potassium (<0.5, 0.2–1.2, and 3–5 mg/kg, respectively) in all habitats, and a gradient of decreasing availability existed from the mobile to the fixed dunes. Half-lives of leaves were shorter in the fixed dune as compared with the mobile dune. Similarly, half-lives of leaves were shorter in summer than in winter. Experiments using cuttings of P. racemosum tillers showed that as P. racemosum plants grew, so did the deposition of sand on mobile foredunes. The mechanical deposition of sand itself did not stimulate P. racemosum growth. The deposition of saline sand provided a substrate that supported vertical growth of P. racemosum rhizomes and tillers and was a source of adsorbed nutrients. Also, active sand deposition limited the invasion of frontal dunes by other species. Panicum racemosum populations changed from "invader" to "mature" to "regressive" age states over a 5-year period, apparently in response to the spatial patterns of sand deposition and salt spray input. Key words: Panicum, leaf demography, growth vigour, sand dunes, temporal changes.


2008 ◽  
Vol 87 (4) ◽  
pp. 359-361 ◽  
Author(s):  
T. van der Hammen ◽  
B. van Geel

AbstractDuring the warm Bølling-Allerød interstadial, tree species migrated from their refugia in southern Europe northwards into the area within the present temperate climatic zone. It is evident from high levels of charcoal in fossil records in this region that, especially during the later part of the Bølling-Allerød interstadial, many fires occurred. The start of the Younger Dryas was characterised by rapid and intense cooling and rising water tables, with catastrophic effects on the vegetation. Thermophilous pine trees could not survive the cold Younger Dryas climate. Dead wood provided an abundant source of fuel for intense, large-scale fires seen in many records as a concentration of charcoal particles in so-called ’Usselo-soils’ dated to ca 10,95014C BP. A similar trend in increased charcoal indicating increased burning is seen at many sites across North America at this time and it has been suggested by Firestone et al. (2007) that this was caused by an explosion of extra-terrestrial material over northern North America, causing the Younger Dryas climate cooling and Megafaunal extinction. We argue that there is no need to invoke an extraterrestrial cause to explain the charcoal in the fossilized soils. The volume of forest trees that died as a result of the cold Younger Dryas climate would easily have supplied sufficient fuel for intense, large-scale fires and can be used to account for the concentration of charcoal particles. As soils were no longer covered by dense vegetation, much erosion occurred during the Younger Dryas and therefore, at many places, Usselo soils, rich in charcoal, were preserved under aeolian sand dunes.


1962 ◽  
Vol 12 (1) ◽  
pp. 9-17
Author(s):  
Gerhard Lang

Abstract. Based upon newer papers a brief summary is given on Late-glacial and Pre-boreal vegetational history at the western and northern border of the Alps; the effects of the Bölling- and especially the Alleröd-oscillation are demonstrated. Proceeding of that the different results by H. Zoller (I960) in Southern Switzerland are examined and the arguments for another dating of his two Late-glacial pollen diagramms are discussed. According to that the first afforestation in the lowlands at the southern border of the Alps occured not in the Allerod but already in the Boiling period; the „Piottino-oscillation", associated with the Gschnitz-Stadium, is probably not a new discovered Pre-boreal climatic oscillation, but corresponds to the Alleröd-oscillation. Therefore it seems not necessary to doubt the synchronism of Younger Dryas and Schlußvereisung in the Alps.


2022 ◽  
pp. 1-30
Author(s):  
Katelyn N. McDonough ◽  
Jaime L. Kennedy ◽  
Richard L. Rosencrance ◽  
Justin A. Holcomb ◽  
Dennis L. Jenkins ◽  
...  

Paleoethnobotanical perspectives are essential for understanding past lifeways yet continue to be underrepresented in Paleoindian research. We present new archaeobotanical and radiocarbon data from combustion features within stratified cultural components at Connley Caves, Oregon, that reaffirm the inclusion of plants in the diet of Paleoindian groups. Botanical remains from three features in Connley Cave 5 show that people foraged for diverse dryland taxa and a narrow range of wetland plants during the summer and fall months. These data add new taxa to the known Pleistocene food economy and support the idea that groups equipped with Western Stemmed Tradition toolkits had broad, flexible diets. When viewed continentally, this work contributes to a growing body of research indicating that regionally adapted subsistence strategies were in place by at least the Younger Dryas and that some foragers in the Far West may have incorporated a wider range of plants including small seeds, leafy greens, fruits, cacti, and geophytes into their diet earlier than did Paleoindian groups elsewhere in North America. The increasing appearance of diverse and seemingly low-ranked resources in the emerging Paleoindian plant-food economy suggests the need to explore a variety of nutritional variables to explain certain aspects of early foraging behavior.


2019 ◽  
Vol 92 (1) ◽  
pp. 146-164 ◽  
Author(s):  
Kenneth D. Adams ◽  
Edward J. Rhodes

AbstractA new lake-level curve for Pyramid and Winnemucca lakes, Nevada, is presented that indicates that after the ~15,500 cal yr BP Lake Lahontan high stand (1338 m), lake level fell to an elevation below 1200 m, before rising to 1230 m at the 12,000 cal yr BP Younger Dryas high stand. Lake level then fell to 1155 m by ~10,500 cal yr BP followed by a rise to 1200 m around 8000 cal yr BP. During the mid-Holocene, levels were relatively low (~1155 m) before rising to moderate levels (1190–1195 m) during the Neopluvial period (~4800–3400 cal yr BP). Lake level again plunged to about 1155 m during the late Holocene dry period (~2800–1900 cal yr BP) before rising to about 1190 m by ~1200 cal yr BP. Levels have since fluctuated within the elevation range of about 1170–1182 m except for the last 100 yr of managed river discharge when they dropped to as low as 1153 m. Late Holocene lake-level changes correspond to volume changes between 25 and 55 km3 and surface area changes between 450 and 900 km2. These lake state changes probably encompass the hydrologic variability possible under current climate boundary conditions.


2019 ◽  
Vol 15 (2) ◽  
pp. 713-733 ◽  
Author(s):  
Johannes Hepp ◽  
Lorenz Wüthrich ◽  
Tobias Bromm ◽  
Marcel Bliedtner ◽  
Imke Kathrin Schäfer ◽  
...  

Abstract. Causes of the Late Glacial to Early Holocene transition phase and particularly the Younger Dryas period, i.e. the major last cold spell in central Europe during the Late Glacial, are considered to be keys for understanding rapid natural climate change in the past. The sediments from maar lakes in the Eifel, Germany, have turned out to be valuable archives for recording such paleoenvironmental changes. For this study, we investigated a Late Glacial to Early Holocene sediment core that was retrieved from the Gemündener Maar in the Western Eifel, Germany. We analysed the hydrogen (δ2H) and oxygen (δ18O) stable isotope composition of leaf-wax-derived lipid biomarkers (n-alkanes C27 and C29) and a hemicellulose-derived sugar biomarker (arabinose), respectively. Both δ2Hn-alkane and δ18Osugar are suggested to reflect mainly leaf water of vegetation growing in the catchment of the Gemündener Maar. Leaf water reflects δ2H and δ18O of precipitation (primarily temperature-dependent) modified by evapotranspirative enrichment of leaf water due to transpiration. Based on the notion that the evapotranspirative enrichment depends primarily on relative humidity (RH), we apply a previously introduced “coupled δ2Hn-alkane–δ18Osugar paleohygrometer approach” to reconstruct the deuterium excess of leaf water and in turn Late Glacial–Early Holocene RH changes from our Gemündener Maar record. Our results do not provide evidence for overall markedly dry climatic conditions having prevailed during the Younger Dryas. Rather, a two-phasing of the Younger Dryas is supported, with moderate wet conditions at the Allerød level during the first half and drier conditions during the second half of the Younger Dryas. Moreover, our results suggest that the amplitude of RH changes during the Early Holocene was more pronounced than during the Younger Dryas. This included the occurrence of a “Preboreal Humid Phase”. One possible explanation for this unexpected finding could be that solar activity is a hitherto underestimated driver of central European RH changes in the past.


Radiocarbon ◽  
2004 ◽  
Vol 46 (2) ◽  
pp. 933-941 ◽  
Author(s):  
Irina P Panyushkina ◽  
Steven W Leavitt ◽  
Alex Wiedenhoeft ◽  
Sarah Noggle ◽  
Brandon Curry ◽  
...  

The abrupt millennial-scale changes associated with the Younger Dryas (YD) event (“chronozone”) near the dawn of the Holocene are at least hemispheric, if not global, in extent. Evidence for the YD cold excursion is abundant in Europe but fairly meager in central North America. We are engaged in an investigation of high-resolution environmental changes in mid-North America over several millennia (about 10,000 to 14,000 BP) during the Late Glacial–Early Holocene transition, including the YD interval. Several sites containing logs or stumps have been identified and we are in the process of initial sampling or re-sampling them for this project. Here, we report on a site in central Illinois containing a deposit of logs initially thought to be of YD age preserved in alluvial sands. The assemblage of wood represents hardwood (angiosperm) trees, and the ring-width characteristics are favorable to developing formal tree-ring chronologies. However, 4 new radiocarbon dates indicate deposition of wood may have taken place over at least 8000 14C yr (6000–14,000 BP). This complicates the effort to develop a single floating chronology of several hundred years at this site, but it may provide wood from a restricted region over a long period of time from which to develop a sequence of floating chronologies, the timing of deposition and preservation of which could be related to paleoclimatic events and conditions.


2019 ◽  
Vol 56 (2) ◽  
pp. 175-182
Author(s):  
Timothy G. Fisher ◽  
Jennifer Horton ◽  
Kenneth Lepper ◽  
Henry Loope

The last aeolian activity of a significant number of inland sand dunes in the southern Great Lakes region (SGLR) was several thousands of years after deglaciation. At Mongo, Indiana, a field of parabolic sand dunes with a variety of morphologies are within the channel bottom of the Pigeon River meltwater channel, with some dunes having climbed up the channel wall onto the adjacent upland surface. The optically stimulated luminescence (OSL) samples from the channel-bottom dunes have a mean age of 14.2 ± 1.6 ka (n = 2) and the OSL samples from upland dunes have a mean age of 12.3 ± 1.6 ka (n = 4). Dunes and outwash ages and geomorphic setting constrain both the position of the Huron-Erie and Saginaw lobes. The oldest dune age is also a minimum age for cessation of local meltwater flow from the Huron-Erie Lobe of the Laurentide Ice Sheet and formation of the adjacent Sturgis Moraine of the Saginaw Lobe. The final activity of the dunes is coincident with late glacial stadial and interstadial events as recorded in the Greenland ice core records, a similar finding to all other studies of dunes in the SGLR. It is now well recognized that many dunes were last active before, during, and after the Younger Dryas stadial, presumably in response to a climate that was windier and less favorable for vegetation.


Geosphere ◽  
2020 ◽  
Author(s):  
Richard A. Young ◽  
Lee M. Gordon ◽  
Lewis A. Owen ◽  
Sebastien Huot ◽  
Timothy D. Zerfas

Widespread evidence of an unrecognized late glacial advance across preexisting moraines in western New York is confirmed by 40 14C ages and six new optically stimulated luminescence analyses between the Genesee Valley and the Cattaraugus Creek basin of eastern Lake Erie. The Late Wisconsin chronology is relatively unconstrained by local dating of moraines between Pennsylvania and Lake Ontario. Few published 14C ages record discrete events, unlike evidence in the upper Great Lakes and New England. The new 14C ages from wood in glacial tills along Buttermilk Creek south of Springville, New York, and reevaluation of numerous 14C ages from miscellaneous investigations in the Genesee Valley document a significant glacial advance into Cattaraugus and Livingston Counties between 13,000 and 13,300 cal yr B.P., near the Greenland Interstadial 1b (GI-1b) cooling leading into the transition from the Bölling-Alleröd to the Younger Dryas. The chronology from four widely distributed sites indicates that a Late Wisconsin advance spread till discontinuously over the surface, without significantly modifying the preexisting glacial topography. A short-lived advance by a partially grounded ice shelf best explains the evidence. The advance, ending 43 km south of Rochester and a similar distance south of Buffalo, overlaps the revised chronology for glacial Lake Iroquois, now considered to extend from ca. 14,800–13,000 cal yr B.P. The spread of the radiocarbon ages is similar to the well-known Two Creeks Forest Bed, which equates the event with the Two Rivers advance in Wisconsin.


Sign in / Sign up

Export Citation Format

Share Document