AN EFFICIENT METHOD FOR IMPROVING THE COMPUTATIONAL PERFORMANCE OF THE CUBIC LUCAS CRYPTOSYSTEM

2014 ◽  
Vol 90 (1) ◽  
pp. 160-171
Author(s):  
REZA NAGHIZADEH MAJID ◽  
ELANKOVAN SUNDARARAJAN ◽  
ZULKARNAIN MD ALI

AbstractThe cubic version of the Lucas cryptosystem is set up based on the cubic recurrence relation of the Lucas function by Said and Loxton [‘A cubic analogue of the RSA cryptosystem’, Bull. Aust. Math. Soc.68 (2003), 21–38]. To implement this type of cryptosystem in a limited environment, it is necessary to accelerate encryption and decryption procedures. Therefore, this paper concentrates on improving the computation time of encryption and decryption in cubic Lucas cryptosystems. The new algorithm is designed based on new properties of the cubic Lucas function and mathematical techniques. To illustrate the efficiency of our algorithm, an analysis was carried out with different size parameters and the performance of the proposed and previously existing algorithms was evaluated with experimental data and mathematical analysis.

For purposes of bridge design it is all important to be able to predict with a reasonable degree of accuracy the state of oscillation which will be set up when a given locomotive crosses a bridge at any specified speed. A large amount of experimental data relating to impact effects on bridges has been accumulated, but in default of an underlying theory sufficiently comprehensive in character to account for the phenomena observed, the conclusions emerging from experimental results have been somewhat disappointing and vague. The problem is one which most essentially calls for the closest possible cooperation between mathematical analysis and practical experiment. At the present stage experiment has outrun theory, and it was with the object of redressing, in some measure, this lack of balance that the following theoretical investigation was undertaken.


Author(s):  
Keith M. Martin

In this chapter, we introduce public-key encryption. We first consider the motivation behind the concept of public-key cryptography and introduce the hard problems on which popular public-key encryption schemes are based. We then discuss two of the best-known public-key cryptosystems, RSA and ElGamal. For each of these public-key cryptosystems, we discuss how to set up key pairs and perform basic encryption and decryption. We also identify the basis for security for each of these cryptosystems. We then compare RSA, ElGamal, and elliptic-curve variants of ElGamal from the perspectives of performance and security. Finally, we look at how public-key encryption is used in practice, focusing on the popular use of hybrid encryption.


2014 ◽  
Vol 984-985 ◽  
pp. 1357-1363
Author(s):  
M. Vinothini ◽  
M. Manikandan

During real time there are problems in transmitting video directly to the client. One of the main problems is, intermediate intelligent proxy can easily hack the data as the transmitter fails to address authentication, and fails to provide security guarantees. Hence we provide steganography and cryptography mechanisms like secure-code, IP address and checksum for authentication and AES algorithm with secret key for security. Although the hacker hacks the video during transmission, he cannot view the information. Based on IP address and secure-code, the authenticated user only can get connected to the transmitter and view the information. For further improvement in security, the video is converted into frames and these frames are split into groups and separate shared key is applied to each group of frames for encryption and decryption. This secured communication process is applied in image processing modules like face detection, edge detection and color object detection. To reduce the computation time multi-core CPU processing is utilized. Using multi-core, the tasks are processed in parallel fashion.


Author(s):  
Stefan Schmid ◽  
Rudi Kulenovic ◽  
Eckart Laurien

For the validation of empirical models to calculate leakage flow rates in through-wall cracks of piping, reliable experimental data are essential. In this context, the Leakage Flow (LF) test rig was built up at the IKE for measurements of leakage flow rates with reduced pressure (maximum 1 MPA) and temperature (maximum 170 °C) compared to real plant conditions. The design of the test rig enables experimental investigations of through-wall cracks with different geometries and orientations by means of circular blank sheets with integrated cracks which are installed in the tubular test section of the test rig. In the paper, the experimental LF set-up and used measurement techniques are explained in detail. Furthermore, first leakage flow measurement results for one through-wall crack geometry and different imposed fluid pressures at ambient temperature conditions are presented and discussed. As an additional aspect the experimental data are used for the determination of the flow resistance of the investigated leak channel. Finally, the experimental results are compared with numerical results of WinLeck calculations to prove specifically in WinLeck implemented numerical models.


1987 ◽  
Vol 109 (2) ◽  
pp. 163-168 ◽  
Author(s):  
C. S. Tien ◽  
R. L. Huston

An efficient method for gross-motion simulation of head/neck dynamics in accidents and high acceleration environments is presented. The method uses finite-segment modelling to develop a 3-body model of the head/neck system. The model is shown to compare favorably with an analogous 9-body model and with experimental data. The model is expected to be useful for: (1) efficient analysis of gross-motion head/neck dynamics during accidents; (2) for developing increased intuitive understanding of head/neck behavior; and (3) for use with gross-motion, whole-body, crash-victim simulators.


Resources ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 73 ◽  
Author(s):  
Oreste Fecarotta ◽  
Armando Carravetta ◽  
Maria Morani ◽  
Roberta Padulano

The paper is focused on the optimal scheduling of a drainage pumping station, complying with variations in the pump rotational speed and a recurrent pattern for the inflow discharge. The paper is structured in several consecutive steps. In the first step, the experimental set-up is described and results of calibration tests on different pumping machines are presented to obtain equations linking significant variables (discharge, head, power, efficiency). Then, those equations are utilized to build a mixed-integer optimization model able to find the scheduling solution that minimizes required pumping energy. The model is solved with respect to a case study referred to a urban drainage system in Naples (Italy) and optimization results are analysed to provide insights on the algorithm computational performance and on the influence of pumping machine characteristics on the overall efficiency savings. With reference to the simulated scenarios, an average value of 32% energy can be saved with an optimized control. Its actual value depends on the hydraulic characteristics of the system.


Author(s):  
Jun Kai Wong ◽  
Robert Taylor ◽  
Sungchul Baek ◽  
Yasitha Hewakuruppu ◽  
Xuchuan Jiang ◽  
...  

Gold nanospheres (GNSs), biocompatible nanoparticles that can be designed to absorb visible and near-infrared light, have shown great potential in induced thermal treatment of cancer cells via Plasmonic Photothermal Therapy (PPTT) [3]. In this study, light induced heating of a water-based dispersion of 20 nm diameter GNSs was investigated at their plasmon resonance wavelength (λ = 520 nm). Temperature changes of the solution at the point of light irradiation were measured experimentally. A heat transfer model was used to verify the experimental data. The effect of two key parameters, light intensity and particle concentration, on the solution’s temperature was investigated. The experimental results showed a significant temperature rise of the GNS solution compared to de-ionized water. The temperature rise of GNS solution was linearly proportional to the concentration of GNS (from 0.25–1.0 C, C = 1×1013 particles per ml) and the light intensity (from 0.25 to 0.5 W cm−2). The experimental data matches the modeling results adequately. Overall, it can be concluded that the hyperthermic ablation of cancer cells via GNS can be achieved by controlled by the light intensity and GNS concentration. A novel component of this study is that a high power lamp source was used instead of a high power laser. This means that only low cost components were used in the current experimental set-up. Moreover, by using suitable filters and white light from the high power lamp source, it is possible to obtain light in many wavelength bands for the study of other nanoparticles with different plasmon wavelength ranges. The current results represtent just one example in this versatile experimental set-up developed. It should be noted, however, the plasmon resonance wavelength used in this study is not within the therapeutic window (750–1300 nm) [13]. Therefore, the GNSs used in this experiment are only applicable to the surface induced thermal treatment of cancer cells, for instance, in the skin.


2010 ◽  
Vol 171-172 ◽  
pp. 274-277
Author(s):  
Yun Liang Tan ◽  
Ze Zhang

In order to quest an effective approach for predicate the rheologic deformation of sandstone based on some experimental data, an improved approaching model of RBF neural network was set up. The results show, the training time of improved RBF neural network is only about 10 percent of that of the BP neural network; the improved RBF neural network has a high predicating accuracy, the average relative predication error is only 7.9%. It has a reference value for the similar rock mechanics problem.


Author(s):  
Louay S. Yousuf ◽  
Dan B. Marghitu

In this study a cam and follower mechanism is analyzed. There is a clearance between the follower and the guide. The mechanism is analyzed using SolidWorks simulations taking into account the impact and the friction between the roller follower and the guide. Four different follower guide’s clearances have been used in the simulations like 0.5, 1, 1.5, and 2 mm. An experimental set up is developed to capture the general planar motion of the cam and follower. The measures of the cam and the follower positions are obtained through high-resolution optical encoders (markers). The effect of follower guide’s clearance is investigated for different cam rotational speeds such as 100, 200, 300, 400, 500, 600, 700 and 800 R.P.M. Impact with friction is considered in our study to calculate the Lyapunov exponent. The largest Lyapunov exponents for the simulated and experimental data are analyzed and selected.


Sign in / Sign up

Export Citation Format

Share Document