scholarly journals DHA suppressesPrevotella intermedialipopolysaccharide-induced production of proinflammatory mediators in murine macrophages

2013 ◽  
Vol 111 (7) ◽  
pp. 1221-1230 ◽  
Author(s):  
Eun-Young Choi ◽  
Ji-Young Jin ◽  
Jeom-Il Choi ◽  
In Soon Choi ◽  
Sung-Jo Kim

Several reports have indicated that dietary intake of DHA is associated with lower prevalence of periodontitis. In the present study, we investigated the effect of DHA on the production of proinflammatory mediators in murine macrophage-like RAW264.7 cells stimulated with lipopolysaccharide (LPS) isolated fromPrevotellaintermedia, a pathogen implicated in inflammatory periodontal disease, and its mechanisms of action. LPS was isolated from lyophilisedP.intermediaATCC 25 611 cells using the standard hot-phenol–water protocol. Culture supernatants were collected and assayed for NO, IL-1β and IL-6. Real-time PCR analysis was carried out to detect the expression of inducible NO synthase (iNOS), IL-1β, IL-6 and haeme oxygenase-1 (HO-1) mRNA. Immunoblot analysis was carried out to quantify the expression of iNOS and HO-1 protein and concentrations of signalling proteins. DNA-binding activities of NF-κB subunits were determined using an ELISA-based assay kit. DHA significantly attenuated the production of NO, IL-1β and IL-6 at both gene transcription and translation levels inP.intermediaLPS-activated RAW264.7 cells. DHA induced the expression of HO-1 in cells treated withP.intermediaLPS. Selective inhibition of HO-1 activity by tin protoporphyrin IX significantly mitigated the inhibitory effects of DHA on LPS-induced NO production. DHA significantly attenuated the phosphorylation of c-Jun N-terminal kinase induced by LPS. In addition, DHA suppressed the transcriptional activity of NF-κB by regulating the nuclear translocation and DNA-binding activity of NF-κB p50 subunit and inhibited the phosphorylation of signal transducer and activator of transcription 1. Furtherin vivostudies are needed to better evaluate the potential of DHA in humans as a therapeutic agent to treat periodontal disease.

1991 ◽  
Vol 11 (1) ◽  
pp. 401-411
Author(s):  
S Cuthill ◽  
A Wilhelmsson ◽  
L Poellinger

To reconstitute the molecular mechanisms underlying the cellular response to soluble receptor ligands, we have exploited a cell-free system that exhibits signal- (dioxin-)induced activation of the latent cytosolic dioxin receptor to an active DNA-binding species. The DNA-binding properties of the in vitro-activated form were qualitatively indistinguishable from those of in vivo-activated nuclear receptor extracted from dioxin-treated cells. In vitro activation of the receptor by dioxin was dose dependent and was mimicked by other dioxin receptor ligands in a manner that followed the rank order of their relative affinities for the receptor in vitro and their relative potencies to induce target gene transcription in vivo. Thus, in addition to triggering the initial release of inhibition of DNA binding and presumably allowing nuclear translocation, the ligand appears to play a crucial role in the direct control of the level of functional activity of a given ligand-receptor complex.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Min Hwangbo ◽  
Ji Yun Jung ◽  
Sung Hwan Ki ◽  
Sang Mi Park ◽  
Kyung Hwan Jegal ◽  
...  

Since antiquity, medical herbs have been prescribed for both treatment and preventative purposes. Herbal formulas are used to reduce toxicity as well as increase efficacy in traditional Korean medicine.U-bang-haequi tang(UBT) is a herbal prescription containingArctii fructusandForsythia suspensaas its main components and has treated many human diseases in traditional Korean medicine. This research investigated the effects of UBT against an acute phase of inflammation. For this, we measured induction of nitric oxide (NO) and related proteins in macrophage cell line stimulated by lipopolysaccharide (LPS). Further, paw swelling was measured in carrageenan-treated rats. Carrageenan significantly induced activation of inflammatory cells and increases in paw volume, whereas oral administration of 0.3 or 1 g/kg/day of UBT inhibited the acute inflammatory response. In RAW264.7 cells, UBT inhibited mRNA and protein expression levels of iNOS. UBT treatment also blocked elevation of NO production, nuclear translocation of NF-κB, phosphorylation of Iκ-Bαinduced by LPS. Moreover, UBT treatment significantly blocked the phosphorylation of p38 and c-Jun NH2-terminal kinases by LPS. In conclusion, UBT prevented both acute inflammation in rats as well as LPS-induced NO and iNOS gene expression through inhibition of NF-κB in RAW264.7 cells.


2004 ◽  
Vol 15 (10) ◽  
pp. 4457-4466 ◽  
Author(s):  
Eric Bind ◽  
Yelena Kleyner ◽  
Dorota Skowronska-Krawczyk ◽  
Emily Bien ◽  
Brian David Dynlacht ◽  
...  

Mitogen-activated protein kinases/extracellular signal regulated kinases (MAPKs/ERKs) are typically thought to be soluble cytoplasmic enzymes that translocate to the nucleus subsequent to their phosphorylation by their activating kinases or mitogen-activated protein/extracellular signal regulated kinase kinase. We report here the first example of nuclear translocation of a MAPK that occurs via temporally regulated exit from a membranous organelle. Confocal microscopy examining the subcellular localization of ERK3 in several cell lines indicated that this enzyme was targeted to the Golgi/endoplasmic reticulum Golgi intermediate compartment. Deletion analysis of green fluorescent protein (GFP)-ERK3 uncovered a nuclear form that was carboxy-terminally truncated and established a Golgi targeting motif at the carboxy terminus. Immunoblot analysis of cells treated with the proteasome inhibitor MG132 further revealed two cleavage products, suggesting that in vivo, carboxy-terminal cleavage of the full-length protein controls its subcellular localization. In support of this hypothesis, we found that deletion of a small region rich in acidic residues within the carboxy terminus eliminated both the cleavage and nuclear translocation of GFP-ERK3. Finally, cell cycle synchronization studies revealed that the subcellular localization of ERK3 is temporally regulated. These data suggest a novel mechanism for the localization of an MAPK family member, ERK3, in which cell cycle-regulated, site-specific proteolysis generates the nuclear form of the protein.


2018 ◽  
Vol 46 (06) ◽  
pp. 1281-1296 ◽  
Author(s):  
Sang Yun Han ◽  
Young-Su Yi ◽  
Seong-Gu Jeong ◽  
Yo Han Hong ◽  
Kang Jun Choi ◽  
...  

Lilium bulbs have long been used as Chinese traditional medicines to alleviate the symptoms of various human inflammatory diseases. However, mechanisms of Lilium bulb-mediated anti-inflammatory activity and the bioactive components in Lilium bulbs remain unknown. In the present study, the anti-inflammatory activity of Lilium bulbs and the underlying mechanism of action were investigated in macrophages using Lilium bulb ethanol extracts (Lb-EE). In a dose-dependent manner, Lb-EE inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and bone marrow-derived macrophages (BMDMs) without causing significant cytotoxicity. Lb-EE also down-regulated mRNA expression of inflammatory genes in LPS-stimulated RAW264.7 cells, which included inducuble nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), and tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]). Furthermore, Lb-EE markedly restored LPS-induced morphological changes in RAW264.7 cells to a normal morphology. HPLC analysis identified quercetin, luteolin, and kaempferol as bioactive components contained in Lb-EE. Mechanistic studies in LPS-stimulated RAW264.7 cells revealed that Lb-EE suppressed MyD88- and TRIF-induced NF-[Formula: see text]B transcriptional activation and the nuclear translocation of NF-[Formula: see text]B transcription factors. Moreover, Lb-EE inhibited IKK[Formula: see text]/[Formula: see text]-induced activation of the NF-[Formula: see text]B signaling pathway and IKK inhibition significantly reduced NO production in LPS-stimulated RAW264.7 cells. Taken together, these results suggest that Lb-EE plays an anti-inflammatory role by targeting IKK[Formula: see text]/[Formula: see text]-mediated activation of the NF-[Formula: see text]B signaling pathway during macrophage-mediated inflammatory responses.


2003 ◽  
Vol 71 (7) ◽  
pp. 3794-3801 ◽  
Author(s):  
Tatiana D. Sirakova ◽  
Vinod S. Dubey ◽  
Hwa-Jung Kim ◽  
Michael H. Cynamon ◽  
Pappachan E. Kolattukudy

ABSTRACT The cell wall lipids in Mycobacterium tuberculosis are probably involved in pathogenesis. The largest open reading frame in the genome of M. tuberculosis H37Rv, pks12, is unique in that it encodes two sets of domains needed to produce fatty acids. A pks12-disrupted mutant was produced, and disruption was confirmed by both PCR analysis and Southern blotting. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed that a 430-kDa protein band present in the wild type was missing in the mutant. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MS) and liquid chromatography (LC)-MS analysis of tryptic peptides showed that 54 peptides distributed throughout this protein matched the pks12-encoded sequence. Biochemical analysis using [1-14C]propionate as the radiotracer showed that the pks12 mutant was deficient in the synthesis of dimycocerosyl phthiocerol (DIM). SDS-PAGE, immunoblot analysis of proteins, and analysis of fatty acids showed that the mutant can produce mycocerosic acids. Thus, the pks12 gene is probably involved in the synthesis of phthiocerol, the diol required for DIM synthesis. Growth of the pks12 mutant was attenuated in mouse alveolar macrophage cell line MH-S, and the virulence of the mutant in vivo was highly attenuated in a murine model. Thus, pks12 probably participates in DIM production and its expression is involved in pathogenesis.


Endocrinology ◽  
2009 ◽  
Vol 150 (7) ◽  
pp. 3002-3010 ◽  
Author(s):  
Michael P. Greenwood ◽  
Gert Flik ◽  
Graham F. Wagner ◽  
Richard J. Balment

This study has examined whether the calcium-sensing receptor (CaSR) plays a role in control of stanniocalcin-1 (STC-1), the dominant calcium regulatory hormone of fish, comparable with that demonstrated for CaSR in the mediation of ionized calcium regulation of PTH secretion in mammals. In a previous study, we have cloned flounder STC-1 from the corpuscles of Stannius (CS). Here, we report the cloning and characterization of the CS CaSR, and the in vivo responses of this system to altered salinity, EGTA induced hypocalcemia, and calcimimetic administration. Quantitative PCR analysis demonstrated, for the first time, that the CS are major sites of CaSR expression in flounder. Immunoblot analysis of CS proteins with CaSR-specific antibodies revealed a broad band of approximately 215–300 kDa under nonreducing conditions, and bands of approximately 215–300 kDa and approximately 120–150 kDa under reducing conditions. There were no differences in CS CaSR mRNA expression or plasma STC-1 levels between seawater and freshwater (FW)-adapted fish, although CS STC-1 mRNA expression was lower in FW animals. Immunoblots showed that glycosylated monomeric forms of the CaSR migrated at a lower molecular mass in CS samples from FW animals. The ip administration of EGTA rapidly induced hypocalcemia, and a concomitant lowering of plasma STC-1. Calcimimetic administration (1 mg/kg R-568) rapidly increased plasma STC-1 levels, and reduced plasma concentrations of calcium, phosphate, and magnesium when compared with S-568-treated controls. Together, these findings support an evolutionary conserved role for the CaSR in the endocrine regulation of calcium before the appearance of parathyroid glands in tetrapods.


2001 ◽  
Vol 276 (50) ◽  
pp. 47664-47670 ◽  
Author(s):  
Woo-Jin Chang ◽  
Rafael Alvarez-Gonzalez

Recent studies suggest that the synthesis of protein-bound ADP-ribose polymers catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1) regulates eucaryotic gene expression, including the NF-κB-dependent pathway. Here, we report the molecular mechanism by which PARP-1 activates the sequence-specific binding of NF-κB to its oligodeoxynucleotide. We co-incubated pure recombinant human PARP-1 and the p50 subunit of NF-κB (NF-κB-p50) in the presence or absence of βNAD+in vitro.Electrophoretic mobility shift assays showed that, when PARP-1 was present, NF-κB-p50 DNA binding was dependent on the presence of βNAD+. DNA binding by NF-κB-p50 was not efficient in the absence of βNAD+. In fact, the binding was not efficient in the presence of 3-aminobenzamide (3-AB) either. Thus, we conclude that NF-κB-p50 DNA binding is protein-poly(ADP-ribosyl)ation dependent. Co-immunoprecipitation and immunoblot analysis revealed that PARP-1 physically interacts with NF-κB-p50 with high specificity in the absence of βNAD+. Because NF-kB-p50 was not an efficient covalent target for poly(ADP-ribosyl)ation, our results are consistent with the conclusion that the auto-poly(ADP-ribosyl)ation reaction catalyzed by PARP-1 facilitates the binding of NF-κB-p50 to its DNA by inhibiting the specific protein·protein interactions between NF-κB-p50 and PARP-1. We also report the activation of NF-κB DNA binding by the automodification reaction of PARP-1 in cultured HeLa cells following exposure to H2O2. In these experiments, preincubation of HeLa cells with 3-AB, prior to oxidative damage, strongly inhibited NF-κB activationin vivoas well.


2013 ◽  
Vol 41 (04) ◽  
pp. 927-943 ◽  
Author(s):  
Sushruta Koppula ◽  
Wan-Jae Kim ◽  
Jun Jiang ◽  
Do-Wan Shim ◽  
Na-Hyun Oh ◽  
...  

Carpesium macrocephalum (CM) Fr. et Sav. (Compositae) has been used in Chinese folk medicine as an analgesic, hemostatic, antipyretic, and to suppress inflammatory conditions. In the present study we aimed to provide scientific evidence for the anti-inflammatory properties of CM extract and evaluate the intrinsic mechanisms involved in both in vitro and in vivo experimental models. In in vitro findings, CM significantly inhibited the LPS-stimulated release of proinflammatory mediators such as nitric oxide, tumor necrosis factor-alpha, prostaglandin E2, and interleukin-6 in RAW264.7 macrophages in a concentration-dependent fashion. The attenuation of inflammatory responses in LPS-activated RAW264.7 cells by CM was closely associated with the suppression of nuclear factor-kappa B (NF-κB) phosphorylation, IκB-α degradation, and phosphorylation of Akt. CM treatment also attenuated the phosphorylation of STAT through TRIF dependent pathways in LPS-activated RAW264.7 cells. In vivo studies revealed that CM extract concentration dependently suppressed the acetic acid-induced vascular permeability in mice. Considering the data obtained regulation of multiple signaling mechanisms involving TRIF and Akt/NF-κB pathways might be responsible for the potent anti-inflammatory action of CM, substantiating its traditional use in inflammatory diseases.


1991 ◽  
Vol 11 (1) ◽  
pp. 401-411 ◽  
Author(s):  
S Cuthill ◽  
A Wilhelmsson ◽  
L Poellinger

To reconstitute the molecular mechanisms underlying the cellular response to soluble receptor ligands, we have exploited a cell-free system that exhibits signal- (dioxin-)induced activation of the latent cytosolic dioxin receptor to an active DNA-binding species. The DNA-binding properties of the in vitro-activated form were qualitatively indistinguishable from those of in vivo-activated nuclear receptor extracted from dioxin-treated cells. In vitro activation of the receptor by dioxin was dose dependent and was mimicked by other dioxin receptor ligands in a manner that followed the rank order of their relative affinities for the receptor in vitro and their relative potencies to induce target gene transcription in vivo. Thus, in addition to triggering the initial release of inhibition of DNA binding and presumably allowing nuclear translocation, the ligand appears to play a crucial role in the direct control of the level of functional activity of a given ligand-receptor complex.


2013 ◽  
Vol 41 (05) ◽  
pp. 1109-1123 ◽  
Author(s):  
Hyo-Jin Lee ◽  
Yun-Jeong Jeong ◽  
Tae-Sung Lee ◽  
Yoon-Yub Park ◽  
Whi-Gun Chae ◽  
...  

In this study, we evaluated the anti-inflammatory effects of moringa (Moringa oleifera Lam.), a natural biologically active substance, by determining its inhibitory effects on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophage RAW264.7 cells. Extracts from different parts of moringa (root, leaf, and fruit) reduced LPS-induced nitric oxide (NO) release in a dose-dependent manner. The moringa fruit extract most effectively inhibited LPS-induced NO production and levels of inducible nitric oxide synthase (iNOS). The moringa fruit extract also was shown to suppress the production of inflammatory cytokines including IL-1β, TNF-α, and IL-6. Furthermore, moringa fruit extract inhibited the cytoplasmic degradation of I κ B -α and the nuclear translocation of p65 proteins, resulting in lower levels of NF -κ B transactivation. Collectively, the results of this study demonstrate that moringa fruit extract reduces the levels of pro-inflammatory mediators including NO , IL-1β, TNF-α, and IL-6 via the inhibition of NF -κ B activation in RAW264.7 cells. These findings reveal, in part, the molecular basis underlying the anti-inflammatory properties of moringa fruit extract.


Sign in / Sign up

Export Citation Format

Share Document