scholarly journals Dietary methionine availability affects the main factors involved in muscle protein turnover in rainbow trout (Oncorhynchus mykiss)

2014 ◽  
Vol 112 (4) ◽  
pp. 493-503 ◽  
Author(s):  
Ikram Belghit ◽  
Sandrine Skiba-Cassy ◽  
Inge Geurden ◽  
Karine Dias ◽  
Anne Surget ◽  
...  

Methionine is a limiting essential amino acid in most plant-based ingredients of fish feed. In the present study, we aimed to determine the effect of dietary methionine concentrations on several main factors involved in the regulation of mRNA translation and the two major proteolytic pathways (ubiquitin–proteasome and autophagy-lysosomal) in the white muscle of rainbow trout (Oncorhynchus mykiss). The fish were fed for 6 weeks one of the three isonitrogenous diets providing three different methionine concentrations (deficient (DEF), adequate (ADQ) and excess (EXC)). At the end of the experiment, the fish fed the DEF diet had a significantly lower body weight and feed efficiency compared with those fed the EXC and ADQ diets. This reduction in the growth of fish fed the DEF diet was accompanied by a decrease in the activation of the translation initiation factors ribosomal protein S6 and eIF2α. The levels of the main autophagy-related markers (LC3-II and beclin 1) as well as the expression of several autophagy genes (atg4b, atg12 l, Uvrag, SQSTM1, Mul1 and Bnip3) were higher in the white muscle of fish fed the DEF diet. Similarly, the mRNA levels of several proteasome-related genes (Fbx32, MuRF2, MuRF3, ZNF216 and Trim32) were significantly up-regulated by methionine limitation. Together, these results extend our understanding of mechanisms regulating the reduction of muscle growth induced by dietary methionine deficiency, providing valuable information on the biomarkers of the effects of low-fishmeal diets.

2020 ◽  
pp. 1-11
Author(s):  
Li Wang ◽  
Long Wang ◽  
Dianfu Zhang ◽  
Sai Li ◽  
Jiaojiao Yin ◽  
...  

Abstract Se, an essential biological trace element, is required for fish growth. However, the underlying mechanisms remain unclear. Protein deposition in muscle is an important determinant for fish growth. This study was conducted on juvenile rainbow trout (Oncorhynchus mykiss) to explore the nutritional effects of Se on protein deposition in fish muscle by analysing the postprandial dynamics of both protein synthesis and protein degradation. Trout were fed a basal diet supplemented with or without 4 mg/kg Se (as Se yeast), which has been previously demonstrated as the optimal supplemental level for rainbow trout growth. After 6 weeks of feeding, dietary Se supplementation exerted no influence on fish feed intake, whereas it increased fish growth rate, feed efficiency, protein retention rate and muscle protein content. Results of postprandial dynamics (within 24 h after feeding) of protein synthesis and degradation in trout muscle showed that dietary Se supplementation led to a persistently hyperactivated target of rapamycin complex 1 pathway and the suppressive expression of numerous genes related to the ubiquitin–proteasome system and the autophagy–lysosome system after the feeding. However, the ubiquitinated proteins and microtubule-associated light chain 3B (LC3)-II:LC3-I ratio, biomarkers for ubiquitination and autophagy activities, respectively, exhibited no significant differences among the fish fed different experimental diets throughout the whole postprandial period. Overall, this study demonstrated a promoting effect of nutritional level of dietary Se on protein deposition in fish muscle by accelerating postprandial protein synthesis. These results provide important insights about the regulatory role of dietary Se in fish growth.


Author(s):  
Roxanne J. Saulnier ◽  
Carol Best ◽  
Daniel J. Kostyniuk ◽  
Kathleen M. Gilmour ◽  
Simon G. Lamarre

AbstractWhen confined in pairs, juvenile rainbow trout (Oncorhynchus mykiss) form dominance hierarchies in which subordinate fish exhibit characteristic physiological changes including reduced growth rates and chronically elevated plasma cortisol concentrations. We hypothesized that alterations in protein metabolism contribute to the reduced growth rate of socially stressed trout, and predicted that subordinate trout would exhibit reduced rates of protein synthesis coupled with increases in protein degradation. Protein metabolism was assessed in dominant and subordinate fish after 4 days of social interaction, and in fish that were separated after 4 days of interaction for a 4 days recovery period, to determine whether effects on protein metabolism recovered when social stress was alleviated. Protein metabolism was assessed in liver and white muscle by measuring the fractional rate of protein synthesis and markers of protein degradation. In the white muscle of subordinate fish, protein synthesis was inhibited and activities of the ubiquitin-proteasome pathway (UPP) and the autophagy lysosomal system (ALS) were elevated. By contrast, the liver of subordinate fish exhibited increased rates of protein synthesis and activation of the ALS. When allowed to recover from chronic social stress for 4 days, differences in protein metabolism observed in white muscle of subordinate fish during the interaction period disappeared. In liver, protein synthesis returned to baseline levels during recovery from social stress, but markers of protein degradation did not. Collectively, these data support the hypothesis that inhibition of muscle protein synthesis coupled with increases in muscle protein breakdown contribute to the reduced growth rates of subordinate rainbow trout.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 456
Author(s):  
Amélie Bélanger ◽  
Pallab K. Sarker ◽  
Dominique P. Bureau ◽  
Yvan Chouinard ◽  
Grant W. Vandenberg

Aquaculture feed formulation has recently turned its focus to reduce the reliance on marine-derived resources and utilise alternative feedstuffs, as an approach to improve the environmental sustainability of the aquaculture sector. The fish oil market is highly volatile, and availability of this commodity is continuously decreasing for use in aquaculture. Currently, a growing number of commercial efforts producing microalgae are providing omega 3-rich oil for sustainable aquaculture feed. This study was focused to determine the nutrient digestibility of a marine microalga, Schizochytrium spp., which is rich in docosahexaenoic acid (DHA) and long-chain polyunsaturated fatty acids (LC-PUFA), as a novel dietary lipid source that could be utilized effectively by rainbow trout (Oncorhynchus mykiss). A whole-cell Schizochytrium spp. biomass was used in the digestibility experiment at two different temperatures, 8 °C and 15 °C. No significant differences were detected between the two temperatures for the apparent digestibility coefficients (ADCs) of the dry matter (94.3 ± 4.9%), total lipids (85.8 ± 0.0%), crude proteins (89.5 ± 1.8%), energy (83.1 ± 1.7%) and fatty acids (85.8 ± 7.5%). The ADCs of the nutrients, energy, DHA and other fatty acids showed that Schizochytrium spp. is a high-quality candidate for fish oil substitution and supplement of LC-PUFA in fish feed with vegetable oils.


2009 ◽  
Vol 103 (5) ◽  
pp. 629-642 ◽  
Author(s):  
Catherine-Ines Kolditz ◽  
Elisabeth Plagnes-Juan ◽  
Edwige Quillet ◽  
Florence Lefèvre ◽  
Françoise Médale

Energy intake and genetic background are major determinants of muscle fat content in most animals, including man. We combined genetic selection and dietary energy supply to study the metabolic pathways involved in genetic and nutritional control of fat deposition in the muscle of rainbow trout (Oncorhynchus mykiss). Two experimental lines of rainbow trout, selected for lean (L) or fat (F) muscle, were fed with diets containing either 10 or 23 % lipids from the first feeding, up to 6 months. At the end of the trial, trout exhibited very different values of muscle fat content (from 4·2 to 10·1 % wet weight). Using microarrays made from a rainbow trout multi-tissue cDNA library, we analysed the molecular changes occurring in the muscle of the two lines when fed the low-energy or high-energy diet. The results from microarray analysis revealed that eleven metabolism-related genes were differentially expressed according to the diet while selection resulted in expression change for twenty-six genes. The most striking observation was the increased level of transcripts encoding the VLDL receptor and fatty acid translocase/CD36 following both the high-fat diet and upward selection for muscle fat content, suggesting that these two genes are relevant molecular markers of fat deposition in the white muscle of rainbow trout.


1998 ◽  
Vol 55 (9) ◽  
pp. 2019-2027 ◽  
Author(s):  
H Néji ◽  
J de la Noüe

This study was undertaken to investigate the effects of bacterial infection (Aeromonas salmonicida) and chronic hypoxia on mortality, feed intake, and apparent digestibility of each of two diets in rainbow trout (Oncorhynchus mykiss). The diets were isonitrogenous (gross basis); one was based mainly on animal protein and the other on vegetal protein. In each of two separate and successive experiments, where the first served as a control for the second, fish were immersed on day 0 (d0) in either a sterile phosphate buffer solution (first experiment) or a suspension of A. salmonicida (second experiment). Thereafter, the fish were either exposed on d2 for 12 days to hypoxic conditions (60% of water oxygen saturation) or maintained under normal conditions. Feed intake was measured daily, while apparent digestibility coefficients for gross energy, dry matter, and crude protein were measured on d0, d2, d5, d9, d11, and d14. Among all infected fish, feed intakes were reduced (P < 0.05), regardless of the source of dietary protein or the degree of water oxygenation. Also, regardless of infection, the feed intakes of hypoxic fish that were fed the vegetal protein based diet were significantly less than those of fish that were fed the animal protein based diet. This response, however, was transitory, since normal levels of feed intake in the former fish were found by d3. The apparent digestibility coefficients for all parameters were unaltered by hypoxia (P > 0.05), but they were significantly reduced (P < 0.05) by A. salmonicida infection, especially during the critical period of infection (d5 and d9).


2006 ◽  
Vol 190 (3) ◽  
pp. 879-888 ◽  
Author(s):  
Dilip K Garikipati ◽  
Scott A Gahr ◽  
Buel D Rodgers

Myostatin is a potent negative regulator of skeletal muscle growth. Although several cDNA clones have been characterized in different vertebrates, the genomic organization and bioactivity of non-mammalian homologs have not. The intron/exon organization and promoter subsequence analysis of two rainbow trout myostatin genes, rtMSTN-1a and rtMSTN-1b (formerly 1 and 2 respectively), as well as a quantitative assessment of their embryonic, larval, and adult tissue expression profiles are reported herein. Each gene was similarly organized into three exons of 490, 368, and 1600 bp for MSTN-1a and 486, 386, and 1419 bp for MSTN-1b. Comparative mapping of coding regions from several vertebrate myostatin genes revealed a common organization between species, including conserved pre-mRNA splice sites; the first among the fishes and the second across all vertebrate species. In silico subsequence analysis of the promoter regions identified E-boxes and other putative myogenic response elements. However, the number and diversity of elements were considerably less than those found in mammalian promoters or in the recently characterized zebrafish MSTN-2 gene. A quantitative analysis of the embryonic expression profile for both genes indicates that rtMSTN-1a expression is consistently greater than that of rtMSTN-1b and neither gene is significantly expressed throughout gastrulation. Expression of both steadily increases fourfold during somitogenesis and subsides as this period ends. After eyeing, however, rtMSTN-1a mRNA levels ultimately rise 20-fold by day 49 and peak before hatching and yolk sac absorption (YSA). Levels of rtMSTN-1b rise similarly, but do not peak before YSA. An analysis of adult (2-year-old fish) tissue expression indicates that both transcripts are present in most tissues although levels are highest in brain, testes, eyes, muscle, and surprisingly spleen. These studies suggest that strong selective pressures have preserved the genomic organization of myostatin genes throughout evolution. However, the different expression profiles and putative promoter elements in fishes versus mammals suggests that limitations in myostatin function may have evolved recently.


Sign in / Sign up

Export Citation Format

Share Document