scholarly journals Impact of cafeteria feeding during lactation in the rat on novel object discrimination in the offspring

2014 ◽  
Vol 112 (12) ◽  
pp. 1933-1937 ◽  
Author(s):  
Thomas M. Wright ◽  
Madeleine V. King ◽  
William G. Davey ◽  
Simon C. Langley-Evans ◽  
Jörg-Peter W. Voigt

There is increasing evidence that hyperenergetic diets have an impact on memory in rodents. However, it is largely unknown how diets, such as a cafeteria diet (CD), that mimic a Western-type diet act on learning and memory, in particular when fed during early stages of development. Here, we fed lactating dams a CD and exposed both male and female offspring to a novel object discrimination (NOD) task, a two-trial test of recognition memory in which rats exposed to two identical objects during a training/familiarisation trial can discriminate a novel from a familiar object during the subsequent choice trial. The choice trial was performed following inter-trial interval (ITI) delays of up to 4 h. Maternal diet did not have an impact on exploration of the objects by either sex during the familiarisation trial. Control males discriminated the novel from the familiar object, indicating intact memory with an ITI of 1 h, but not 2 or 4 h. The CD delayed this natural forgetting in male rats such that discrimination was also evident after a 2 h ITI. In contrast, control females exhibited discrimination following both 1 and 2 h ITI, but the CD impaired performance. In summary, the present study shows that maternal exposure to the CD programmes NOD in the adult. In better-performing females, dietary programming interferes with NOD, whereas NOD was improved in males after lactational CD feeding.

Author(s):  
Kinga Gawlińska ◽  
Dawid Gawliński ◽  
Małgorzata Filip ◽  
Edmund Przegaliński

Abstract Background Recent studies have shown a relationship between the composition of the maternal diet and acquiring a risk of mental illnesses through changes in the offspring’s brain. This study assessed the role of a modified maternal diet on the levels of serotonin (5-HT)2C and 5-HT2A receptors in the offspring brain. Methods Wistar rat dams during gestation and lactation were maintained either on a standard (SD) or special diets: high-fat (HFD), high-carbohydrate (rich in sucrose, HCD) or mixed (MD). Offspring were weaned to SD after lactation, and at postnatal days (PNDs) 28 and 63 changes in the 5-HT2C and 5-HT2A receptor levels were evaluated in their prefrontal cortex (PFCx), nucleus accumbens (NAc), dorsal striatum (DSTR) and hippocampus (HIP). Results Maternal HFD reduced the expression of 5-HT2C receptors in male rats at PND 28 in the PFCx, NAc, and DSTR but increased it at PND 63 in male animals in the NAc and DSTR. HCD induced a decrease in the expression of 5-HT2C receptors in male offspring at PND 28 but increased it in female rats at PND 63 in the PFCx. MD reduced 5-HT2C receptor expression in males at PND 28 in the PFCx and increased it in male and female offspring at PND 28 in the HIP. Moreover, maternal HFD reduced 5-HT2A receptor levels within the PFCx in adolescent male offspring. Conclusion Our findings indicate that a modified maternal diet induces age- and sex-specific adaptive changes mainly in 5-HT2C receptors, which may contribute to disturbances in the offspring brain. Graphic abstract


2021 ◽  
Vol 29 (1) ◽  
pp. 1-6
Author(s):  
Maria Carolina Gonzalez ◽  
Andressa Radiske ◽  
Sergio Conde-Ocazionez ◽  
Janine I. Rossato ◽  
Lia R.M. Bevilaqua ◽  
...  

Hippocampal dopamine D1/D5 receptor-dependent destabilization is necessary for object recognition memory (ORM) updating through reconsolidation. Dopamine also regulates hippocampal theta and gamma oscillations, which are involved in novelty and memory processing. We found that, in adult male rats, ORM recall in the presence of a novel object, but not in the presence of a familiar one, triggers hippocampal theta–gamma coupling. Hippocampal theta–gamma coupling (hPAC) does not happen when ORM destabilization is prevented by blocking D1/D5 receptors, but artificial hPAC generation during recall in the presence of a familiar object enables the amnesic effect of reconsolidation inhibitors. Therefore, hPAC controls ORM destabilization, and its modulation could increase reconsolidation-based psychotherapy efficacy.


1999 ◽  
Vol 77 (11) ◽  
pp. 1822-1828 ◽  
Author(s):  
Andrew G McAdam ◽  
John S Millar

Growth and female maturation appear to be limited by the availability of dietary protein in natural populations of deer mice (Peromyscus maniculatus borealis) in the Kananaskis Valley, Alberta. We examined the effects of dietary protein content on nestling growth rates and sexual maturation of female deer mice in two laboratory experiments. In the first, mice whose mothers were fed a low-protein mixture of sunflower seeds and oats (14% protein) exhibited slow growth prior to weaning and those fed high-protein cat food (30% protein) postweaning showed compensatory growth. Preweaning but not postweaning diet quality affected the proportion of females who were sexually mature at 42 days of age. Therefore, while deficient nestling growth can be compensated for, the effects of a low-quality maternal diet during lactation may have lasting effects on the maturation of female offspring. In the second experiment, mice raised on isocaloric diets of 14, 20, and 30% protein did not differ in growth as nestlings or juveniles. Differences among the three diets in the proportion of mature females at 42 days did not correspond to dietary protein levels as predicted. Dietary protein content from 14 to 30% appear to be sufficient for juvenile mice raised in captivity.


2007 ◽  
Vol 292 (5) ◽  
pp. R1810-R1818 ◽  
Author(s):  
Claire J. Stocker ◽  
Ed Wargent ◽  
Jacqueline O'Dowd ◽  
Claire Cornick ◽  
John R. Speakman ◽  
...  

Absence of leptin is known to disrupt the development of energy balance regulatory mechanisms. We investigated whether administration of leptin to normally nourished rats affects energy balance in their offspring. Leptin (2 mg·kg−1·day−1) was administered from day 14 of pregnancy and throughout lactation. Male and female offspring were fed either on chow or on high-fat diets that elicited similar levels of obesity in the sexes from 6 wk to 15 mo of age. Treatment of the dams with leptin prevented diet-induced increases in the rate of weight gain, retroperitoneal fat pad weight, area under the intraperitoneal glucose tolerance curve, and fasting plasma insulin concentration in female offspring. In the male offspring, the diet-induced increase in weight gain was prevented and increased fat pad weight was reduced. Energy intake per rat was higher in response to the obesogenic diet in male offspring of saline-treated but not leptin-treated dams. A similar trend was seen in 3-mo-old female offspring. Energy expenditure at 3 mo of age was higher for a given body weight in female offspring of leptin-treated compared with saline-treated dams when these animals were fed on the obesogenic diet. A similar trend was seen for male rats fed on the obesogenic diet. Thus leptin levels during pregnancy and lactation can affect the development of energy balance regulatory systems in their offspring.


2018 ◽  
Vol 96 (8) ◽  
pp. 882-887 ◽  
Author(s):  
Chao Yin ◽  
Guofu Wang ◽  
Shixing Gao ◽  
Yanping Huang ◽  
Ruqian Zhao ◽  
...  

This study evaluated the effect of maternal restraint stress during the gestation period on behaviors, biochemical parameters, and antioxidant capacities of offspring rats (Rattus norvegicus (Berkenhout,1769)) at weaning age. Behaviors, plasma biochemical indices, and antioxidant ability of the liver, soleus muscle, and gastrocnemius muscle of mother and (or) offspring rats were analyzed. Significant increases were found in the immobility and swinging behavior frequencies of offspring male rats; no difference was found in behaviors of female rats. The antioxidant indices including superoxide dismutase, nitric oxide synthase, and total antioxidant capacity in the soleus muscle of offspring male rats were significantly decreased in the restraint group. Female offspring rats showed significant lower glutathione and higher malondialdehyde levels in the gastrocnemius muscle and liver, respectively. No difference was found in the productive performance and plasma biochemical indices of maternal rats, nor in the biochemical parameters of the two groups of weaning rats. The results suggested that maternal chronic stresses negatively affected the behaviors and antioxidant abilities of offspring rats, and that these effects possibly have a greater impact on offspring male rats than on female rats.


2019 ◽  
Vol 317 (3) ◽  
pp. E526-E534 ◽  
Author(s):  
Marianna Sadagurski ◽  
Lucas Kniess Debarba ◽  
Joao Pedro Werneck-de-Castro ◽  
Abear Ali Awada ◽  
Tess A. Baker ◽  
...  

Branched-chain amino acid (BCAAs: leucine, isoleucine, and valine) contribute to the development of obesity-associated insulin resistance in the context of consumption of a high-fat diet (HFD) in humans and rodents. Maternal diet is a major determinant of offspring health, and there is strong evidence that maternal HFD alters hypothalamic developmental programming and disrupts offspring energy homeostasis in rodents. In this study, we exposed pregnant and lactating C57BL/6JB female mice to either HFD, HFD with supplemented BCAA (HFD+BCAA), or standard diet (SC), and we studied offspring metabolic phenotypes. Both maternal HFD and HFD supplemented with BCAA had similar effect rendering the offspring metabolic imbalance and impairing their ability to cope with HFD when challenged during aging. The metabolic effects of HFD challenge were more profound in females, worsening female offspring ability to cope with an HFD challenge by activating hypothalamic inflammation in aging. Moreover, the sex differences in hypothalamic estrogen receptor α (ER-α) expression levels were lost in female offspring upon HFD challenge, supporting a link between ER-α levels and hypothalamic inflammation in offspring and highlighting the programming potential of hypothalamic inflammatory responses and maternal nutrition.


Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1462
Author(s):  
Dawid Gawliński ◽  
Kinga Gawlińska ◽  
Małgorzata Frankowska ◽  
Małgorzata Filip

Recent studies have emphasized the role of the maternal diet in the development of mental disorders in offspring. Substance use disorder is a major global health and economic burden. Therefore, the search for predisposing factors for the development of this disease can contribute to reducing the health and social damage associated with addiction. In this study, we focused on the impact of the maternal diet on changes in melanocortin-4 (MC-4) receptors as well as on behavioral changes related to cocaine addiction. Rat dams consumed a high-fat diet (HFD), high-sugar diet (HSD, rich in sucrose), or mixed diet (MD) during pregnancy and lactation. Using an intravenous cocaine self-administration model, the susceptibility of female offspring to cocaine reward and cocaine-seeking propensities was evaluated. In addition, the level of MC-4 receptors in the rat brain structures related to cocaine reward and relapse was assessed. Modified maternal diets did not affect cocaine self-administration in offspring. However, the maternal HSD enhanced cocaine-seeking behavior in female offspring. In addition, we observed that the maternal HSD and MD led to increased expression of MC-4 receptors in the nucleus accumbens, while increased MC-4 receptor levels in the dorsal striatum were observed after exposure to the maternal HSD and HFD. Taken together, it can be concluded that a maternal HSD is an important factor that triggers cocaine-seeking behavior in female offspring and the expression of MC-4 receptors.


2019 ◽  
Vol 25 (7) ◽  
pp. 688-698 ◽  
Author(s):  
Leslie S. Gaynor ◽  
Rosie E. Curiel Cid ◽  
Ailyn Penate ◽  
Mónica Rosselli ◽  
Sara N. Burke ◽  
...  

AbstractObjective:Detection of cognitive impairment suggestive of risk for Alzheimer’s disease (AD) progression is crucial to the prevention of incipient dementia. This study was performed to determine if performance on a novel object discrimination task improved identification of earlier deficits in older adults at risk for AD.Method:In total, 135 participants from the 1Florida Alzheimer’s Disease Research Center [cognitively normal (CN), Pre-mild cognitive impairment (PreMCI), amnestic mild cognitive impairment (aMCI), and dementia] completed a test of object discrimination and traditional memory measures in the context of a larger neuropsychological and clinical evaluation.Results:The Object Recognition and Discrimination Task (ORDT) revealed significant differences between the PreMCI, aMCI, and dementia groups versus CN individuals. Moreover, relative risk of being classified as PreMCI rather than CN increased as an inverse function of ORDT score.Discussion:Overall, the obtained results suggest that a novel object discrimination task improves the detection of very early AD-related cognitive impairment, increasing the window for therapeutic intervention. (JINS, 2019,25, 688–698)


2005 ◽  
Vol 288 (3) ◽  
pp. R575-R579 ◽  
Author(s):  
Marina Korotkova ◽  
Britt G. Gabrielsson ◽  
Agneta Holmäng ◽  
Britt-Marie Larsson ◽  
Lars Å. Hanson ◽  
...  

Epidemiological studies in humans have shown that perinatal nutrition affects health later in life. We have previously shown that the ratio of n-6 to n-3 polyunsaturated fatty acids (PUFA) in the maternal diet affects serum leptin levels and growth of the suckling pups. The aim of the present study was to investigate the long-term effects of various ratios of the dietary n-6 and n-3 PUFA during the perinatal period on serum leptin, insulin, and triacylglycerol, as well as body growth in the adult offspring. During late gestation and throughout lactation, rats were fed an isocaloric diet containing 7 wt% fat, either as linseed oil (n-3 diet), soybean oil (n-6/n-3 diet), or sunflower oil (n-6 diet). At 3 wk of age, the n-6/n-3 PUFA ratios in the serum phospholipids of the offspring were 2.5, 8.3, and 17.5, respectively. After weaning, all pups were given a standard chow. At the 28th postnatal wk, mean body weight and fasting insulin levels were significantly increased in the rats fed the n-6/n-3 diet perinatally compared with the other groups. The systolic blood pressure and serum triacylglycerol levels were only increased in adult male rats of the same group. These data suggest that the balance between n-6 and n-3 PUFA during perinatal development affects several metabolic parameters in adulthood, especially in the male animals.


2014 ◽  
Vol 306 (7) ◽  
pp. R499-R509 ◽  
Author(s):  
Yada Treesukosol ◽  
Bo Sun ◽  
Alexander A. Moghadam ◽  
Nu-Chu Liang ◽  
Kellie L. Tamashiro ◽  
...  

Maternal high-fat diet appears to disrupt several energy balance mechanisms in offspring. Here, female offspring from dams fed a high-fat diet (HF) did not significantly differ in body weight compared with those fed chow (CHOW), when weaned onto chow diet. Yet when presented with both a chow and a high-fat diet, high-fat intake was significantly higher in HF compared with CHOW offspring. To assess taste-based responsiveness, offspring (12 wk old) were tested in 30-min sessions (10-s trials) to a sucrose concentration series in a brief-access taste test. Compared with CHOW, the HF offspring initiated significantly fewer trials but did not significantly differ in the amount of concentration-dependent licking. Thus, rather than affect lick response (consummatory), maternal diet affects spout approach (appetitive), which may be attributed to motivation-related mechanisms. Consistent with this possibility, naltrexone, an opioid receptor antagonist, further reduced trial initiation, but not licking in both groups. With naltrexone administration, the group difference in trial initiation was no longer evident, suggesting differences in endogenous opioid activity between the two groups. Relative expression of μ-opioid receptor in the ventral tegmental area was significantly lower in HF rats. When trial initiation was not required in one-bottle intake tests, no main effect of maternal diet on the intake of sucrose and corn oil emulsions was observed. Thus, the maternal high-fat diet-induced difference in diet preference is not likely due to changes in the sensory orosensory component of the taste stimulus but may depend on alterations in satiety signals or absorptive mechanisms.


Sign in / Sign up

Export Citation Format

Share Document