scholarly journals Dietary trans-10, cis-12-conjugated linoleic acid alters fatty acid metabolism and microbiota composition in mice

2015 ◽  
Vol 113 (5) ◽  
pp. 728-738 ◽  
Author(s):  
Tatiana M. Marques ◽  
Rebecca Wall ◽  
Orla O'Sullivan ◽  
Gerald F. Fitzgerald ◽  
Fergus Shanahan ◽  
...  

The main aim of the present study was to investigate the effects of dietary trans-10, cis-12-conjugated linoleic acid (t10c12-CLA) on intestinal microbiota composition and SCFA production. C57BL/6 mice (n 8 per group) were fed a standard diet either supplemented with t10c12-CLA (0·5 %, w/w) (intervention) or with no supplementation (control), daily for 8 weeks. Metabolic markers (serum glucose, leptin, insulin and TAG, and liver TAG) were assessed by ELISA commercial kits, tissue long-chain fatty acids and caecal SCFA by GC, and microbial composition by 16S rRNA pyrosequencing. Dietary t10c12-CLA significantly decreased visceral fat mass (P< 0·001), but did not affect body weight (intervention), when compared with no supplementation (control). Additionally, lipid mass and composition were affected by t10c12-CLA intake. Caecal acetate, propionate and isobutyrate concentrations were higher (P< 0·05) in the t10c12-CLA-supplemented group than in the control group. The analysis of the microbiota composition following 8 weeks of t10c12-CLA supplementation revealed lower proportions of Firmicutes (P= 0·003) and higher proportions of Bacteroidetes (P= 0·027) compared with no supplementation. Furthermore, t10c12-CLA supplementation for 8 weeks significantly altered the gut microbiota composition, harbouring higher proportions of Bacteroidetes, including Porphyromonadaceae bacteria previously linked with negative effects on lipid metabolism and induction of hepatic steatosis. These results indicate that the mechanism of dietary t10c12-CLA on lipid metabolism in mice may be, at least, partially mediated by alterations in gut microbiota composition and functionality.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tom Houben ◽  
John Penders ◽  
Yvonne Oligschlaeger ◽  
Inês A. Magro dos Reis ◽  
Marc-Jan Bonder ◽  
...  

Abstract While the link between diet-induced changes in gut microbiota and lipid metabolism in metabolic syndrome (MetS) has been established, the contribution of host genetics is rather unexplored. As several findings suggested a role for the lysosomal lipid transporter Niemann-Pick type C1 (NPC1) in macrophages during MetS, we here explored whether a hematopoietic Npc1 mutation, induced via bone marrow transplantation, influences gut microbiota composition in low-density lipoprotein receptor knockout (Ldlr−/−) mice fed a high-fat, high-cholesterol (HFC) diet for 12 weeks. Ldlr−/− mice fed a HFC diet mimic a human plasma lipoprotein profile and show features of MetS, providing a model to explore the role of host genetics on gut microbiota under MetS conditions. Fecal samples were used to profile the microbial composition by 16 s ribosomal RNA gene sequencing. The hematopoietic Npc1 mutation shifted the gut microbiota composition and increased microbial richness and diversity. Variations in plasma lipid levels correlated with microbial diversity and richness as well as with several bacterial genera. This study suggests that host genetic influences on lipid metabolism affect the gut microbiome under MetS conditions. Future research investigating the role of host genetics on gut microbiota might therefore lead to identification of diagnostic and therapeutic targets for MetS.


Author(s):  
Sofia Ainonen ◽  
Mysore V Tejesvi ◽  
Md. Rayhan Mahmud ◽  
Niko Paalanne ◽  
Tytti Pokka ◽  
...  

Abstract Background Intrapartum antibiotic prophylaxis (IAP) is widely used, but the evidence of the long-term effects on the gut microbiota and subsequent health of children is limited. Here, we compared the impacts of perinatal antibiotic exposure and later courses of antibiotic courses on gut microbiota. Methods This was a prospective, controlled cohort study among 100 vaginally delivered infants with different perinatal antibiotic exposures: control (27), IAP (27), postnatal antibiotics (24), and IAP and postnatal antibiotics (22). At 1 year of age, we performed next-generation sequencing of the bacterial 16S ribosomal RNA gene of fecal samples. Results Exposure to the perinatal antibiotics had a clear impact on the gut microbiota. The abundance of the Bacteroidetes phylum was significantly higher in the control group, whereas the relative abundance of Escherichia coli was significantly lower in the control group. The impact of the perinatal antibiotics on the gut microbiota composition was greater than exposure to later courses of antibiotics (28% of participants). Conclusions Perinatal antibiotic exposure had a marked impact on the gut microbiota at the age of 1 year. The timing of the antibiotic exposure appears to be the critical factor for the changes observed in the gut microbiota. Impact Infants are commonly exposed to IAP and postnatal antibiotics, and later to courses of antibiotics during the first year of life. Perinatal antibiotics have been associated with an altered gut microbiota during the first months of life, whereas the evidence regarding the long-term impact is more limited. Perinatal antibiotic exposure had a marked impact on the infant’s gut microbiota at 1 year of age. Impact of the perinatal antibiotics on the gut microbiota composition was greater than that of the later courses of antibiotics at the age of 1 year.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Renata Rodrigues Teixeira ◽  
Laila S. Andrade ◽  
Natalia Barros Ferreira Pereira ◽  
Christian Hoffmann ◽  
Lilian Cuppari

Abstract Background and Aims According to some studies, it seems that advanced chronic kidney disease (CKD) has the potential to cause alterations in the composition of patients gut microbiota. Most of these data have been provided by comparing the microbiota profile between patients and healthy individuals. However, well-known factors that influence the microbiota composition such as age, environment and diet were not considered in the majority of these comparative studies. In the present study, we aimed to compare the gut microbiota composition between patients on peritoneal dialysis (PD) and age-paired healthy household contacts. Method This is a cross-sectional study. Patients undergoing automated PD for at least 3 months, aged 18 to 75 years and clinically stable were enrolled. Those who were using prebiotics, probiotics, symbiotics and antibiotics within a period of 30 days before the study, were not included. A healthy control group was composed by individuals living in the same home and with similar age of the patients. Participants received sterile materials to collect the feces sample and were instructed to keep it refrigerated and bring to the clinic within a period of 12h. To evaluate the microbial profile, 16S ribosomal DNA was PCR-amplified and sequenced on an IlluminaMiSeq platform. Diet was evaluated using a 3-day food record and the diet quality was analyzed by a Brazilian Diet Quality Index. Rome IV questionnaire was applied to diagnose constipation. Nutritional status was assessed by 7-point subjective global assessment (SGA) and body mass index (BMI). Fasting blood samples were collected and clinical data were obtained from interviewing the participants and from the patient’s charts. Data are presented in percentage, mean ± standard deviation or median (interquartile range). Results Twenty patients (PD group) and 20 healthy household contacts (control group) were studied. In PD group: 70% were men, 53.5 (48.2 - 66) years old, 50% had diabetes, BMI 25.9 ± 4.8 kg/m², 95% well-nourished, 40% constipated, 14 (5.2 – 43.5) months on dialysis and 80% had residual diuresis. In control group: 30% were men, 51.5 (46.2 - 59.7) years old, BMI 28.7 ± 3.5 kg/m² and 20% constipated. Except of sex (p = 0.01) and BMI (p = 0.04), there were no other differences between groups. Comparing dietary intake between groups, no difference was found in daily energy [PD: 20.8 ± 5.4 kcal/kg/d vs. control: 22.0 ± 5.6 kcal/kg/d, p = 0.51], protein (PD: 0.8 ± 0.2 g/kg/d vs. control: 0.9 ± 0.2 g/kg/d, p = 0.23) and fiber [PD: 14.1 (10.7 – 21.1) g/d vs. 13.7 (10.4 – 18.0) g/d, p = 0.85]. In addition, the Diet Quality Index was also not different between groups (PD: 52.3 ± 15.6 vs. control: 54.5 ± 14.8, p = 0.65). Regarding microbiota composition, no difference was found between groups in alfa diversity (Figure 1), beta diversity (p&gt;0.05), and genera differential abundance (Figure 2). Conclusion In the present study, no difference in the gut microbiota composition was found between patients on PD and healthy household contacts sharing a similar environment and diet. This result suggests that CKD and PD seem not to alter significantly gut microbiota composition.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Martin Iain Bahl ◽  
Anabelle Legarth Honoré ◽  
Sanne Tygesen Skønager ◽  
Oliver Legarth Honoré ◽  
Tove Clausen ◽  
...  

AbstractOn many mink farms, antibiotics are used extensively during the lactation period to reduce the prevalence and severity of pre-weaning diarrhoea (PWD) in mink kits (also referred to as greasy kit syndrome). Concerns have been raised, that routine treatment of PWD with antibiotics could affect the natural successional development of the gut microbiota, which may have long lasting consequences. Here we investigated the effects of early life antibiotic treatment administered for 1 week (postnatal days 13–20). Two routes of antibiotic administration were compared to a non-treated control group (CTR, n = 24). Routes of administration included indirect treatment, through the milk from dams receiving antibiotics by intramuscular administration (ABX_D, n = 24) and direct treatment by intramuscular administration to the kits (ABX_K, n = 24). A tendency for slightly increased weight at termination (Day 205) was observed in the ABX_K group. The gut microbiota composition was profiled by 16S rRNA gene sequencing at eight time points between Day 7 and Day 205. A clear successional development of the gut microbiota composition was observed and both treatment regimens caused detectable changes in the gut microbiota until at least eight days after treatment ceased. At termination, a significant positive correlation was identified between microbial diversity and animal weight.


2018 ◽  
Vol 29 (3) ◽  
pp. 152-157
Author(s):  
Yuh Shiwa ◽  
Satomi Ito ◽  
Yu Matsumoto ◽  
Tsukasa Suzuki ◽  
Taichiro Ishige ◽  
...  

2019 ◽  
Author(s):  
Jordan Stanford ◽  
Karen Charlton ◽  
Anita Stefoska-Needham ◽  
Rukayat Ibrahim ◽  
Kelly Lambert

Abstract Background There is mounting evidence that individuals with kidney disease have an abnormal gut microbiota composition. No studies to date have summarised the evidence to categorise how the gut microbiota profile of individuals with kidney disease may differ from healthy controls. Synthesis of this evidence is important to inform future clinical trials. This systematic review aims to characterise differences of the gut microbiota composition in adults with kidney disease, as well as to describe the functional capacity of the gut microbiota and reporting of diet as a confounder in these studies. Methods Included studies were those that investigated the gut microbial community in adults with any type of kidney disease and compared this to the profile of healthy controls. Six scientific databases (CINHAL, Medline, PubMed, Scopus, Web of Science, Cochrane Library) as well as selected grey literature sources were searched up until August 2018. Quality assessment was undertaken independently by three authors. The system of evidence level criteria was employed to quantitatively evaluate the alteration of microbiota by strictly considering the number, methodological quality and consistency of the findings. Additional findings relating to altered functions of the gut microbiota, dietary intakes and dietary methodologies used were qualitatively summarised. Results Sixteen articles, reporting 15 studies met the eligibility criteria and included a total of 540 adults with kidney disease and 1117 healthy controls. Compared to healthy controls, individuals with kidney disease had increased abundances of Enterobacteriaceae, and decreased abundances of Coprococcus and Prevotella. Adults with kidney stones also had an altered microbial composition with variations to Bacteroides, Lachnospiraceae NK4A136 group, Ruminiclostridium 5 group, Dorea, Enterobacter, Christensenellaceae and its genus Christensenellaceae R7 group. Altered microbial functions in adults with kidney disease were reported, particularly in the context of metabolic pathways relating to urea and uremic toxin generation. Only three of the 16 articles accounted for diet, and of these studies only two used a valid dietary assessment method. Conclusions The gut microbiota profile of adults with kidney disease differs from healthy controls. Future study designs should include adequate reporting of important confounders such as dietary intakes to assist with interpretation of findings.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Yuliaxis Ramayo-Caldas ◽  
Laura M. Zingaretti ◽  
David Pérez-Pascual ◽  
Pamela A. Alexandre ◽  
Antonio Reverter ◽  
...  

Abstract Background The gut microbiota influences host performance playing a relevant role in homeostasis and function of the immune system. The aim of the present work was to identify microbial signatures linked to immunity traits and to characterize the contribution of host-genome and gut microbiota to the immunocompetence in healthy pigs. Results To achieve this goal, we undertook a combination of network, mixed model and microbial-wide association studies (MWAS) for 21 immunity traits and the relative abundance of gut bacterial communities in 389 pigs genotyped for 70K SNPs. The heritability (h2; proportion of phenotypic variance explained by the host genetics) and microbiability (m2; proportion of variance explained by the microbial composition) showed similar values for most of the analyzed immunity traits, except for both IgM and IgG in plasma that was dominated by the host genetics, and the haptoglobin in serum which was the trait with larger m2 (0.275) compared to h2 (0.138). Results from the MWAS suggested a polymicrobial nature of the immunocompetence in pigs and revealed associations between pigs gut microbiota composition and 15 of the analyzed traits. The lymphocytes phagocytic capacity (quantified as mean fluorescence) and the total number of monocytes in blood were the traits associated with the largest number of taxa (6 taxa). Among the associations identified by MWAS, 30% were confirmed by an information theory network approach. The strongest confirmed associations were between Fibrobacter and phagocytic capacity of lymphocytes (r = 0.37), followed by correlations between Streptococcus and the percentage of phagocytic lymphocytes (r = -0.34) and between Megasphaera and serum concentration of haptoglobin (r = 0.26). In the interaction network, Streptococcus and percentage of phagocytic lymphocytes were the keystone bacterial and immune-trait, respectively. Conclusions Overall, our findings reveal an important connection between gut microbiota composition and immunity traits in pigs, and highlight the need to consider both sources of information, host genome and microbial levels, to accurately characterize immunocompetence in pigs.


2020 ◽  
Vol 318 (2) ◽  
pp. E276-E285 ◽  
Author(s):  
Nirajan Shrestha ◽  
Simone L. Sleep ◽  
James S. M. Cuffe ◽  
Olivia J. Holland ◽  
Andrew J. McAinch ◽  
...  

Dietary intakes of linoleic acid (LA) have increased, including in women of reproductive age. Changes in maternal gut microbiome have been implicated in the metabolic adaptions that occur during pregnancy. We aimed to investigate whether consumption of a diet with elevated LA altered fecal microbiome diversity before and during pregnancy. Female Wistar-Kyoto rats consumed a high-LA diet (HLA: 6.21% of energy) or a low-LA diet (LLA: 1.44% of energy) for 10 wk before mating and during pregnancy. DNA was isolated from fecal samples before pregnancy [embryonic day 0 (E0)], or during pregnancy at E10 and E20. The microbiome composition was assessed with 16S rRNA sequencing. At E0, the beta-diversity of LLA and HLA groups differed with HLA rats having significantly lower abundance of the genera Akkermansia, Peptococcus, Sutterella, and Xo2d06 but higher abundance of Butyricimonas and Coprococcus. Over gestation, in LLA but not HLA rats, there was a reduction in alpha-diversity and an increase in beta-diversity. In the LLA group, the abundance of Akkermansia, Blautia, rc4.4, and Streptococcus decreased over gestation, whereas Coprococcus increased. In the HLA group; only the abundance of Butyricimonas decreased. At E20, there were no differences in alpha- and beta-diversity, and the abundance of Roseburia was significantly increased in the HLA group. In conclusion, consumption of a HLA diet alters gut microbiota composition, as does pregnancy in rats consuming a LLA diet. In pregnancy, consumption of a HLA diet does not alter gut microbiota composition.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2832 ◽  
Author(s):  
Dan Cheng ◽  
Hongsheng Chang ◽  
Suya Ma ◽  
Jian Guo ◽  
Gaimei She ◽  
...  

Tiansi Liquid is a traditional Chinese herbal medicine used to treat depression; however, the underlying mechanisms remain unclear. Here, we examined the effect of Tiansi Liquid in a rat model of hydrocortisone-induced depression using behavioral testing, 16S rRNA high-throughput pyrosequencing and high-performance liquid chromatography-mass spectrometry-based metabolomics of the tryptophan (TRP)–kynurenine (KYN) pathway. Tiansi Liquid significantly improved the sucrose preference and exploratory behavior of the depressive rats. The richness of intestinal mucosa samples from the model (depressive) group tended to be higher than that from the control group, while the richness was higher in the Tiansi Liquid-treated group than in the model group. Tiansi Liquid increased the relative abundance of some microbiota (Ruminococcaceae, Lactococcus, Lactobacillus, Lachnospiraceae_NK4A136_group). Metabolomics showed that Tiansi Liquid reduced the levels of tryptophan 2,3 dioxygenase, indoleamine 2,3-dioxygenase, quinoline and the KYN/TRP ratio, while increasing kynurenic acid and 5-HT levels. Correlation analysis revealed a negative relationship between the relative abundance of the Lachnospiraceae_NK4A136_group and quinoline content. Collectively, these findings suggest that Tiansi Liquid ameliorates depressive symptoms in rats by modulating the gut microbiota composition and metabolites in the TRP–KYN pathway.


2020 ◽  
Vol 11 (8) ◽  
pp. 6818-6833
Author(s):  
Wei-Ling Guo ◽  
Jian-Bin Guo ◽  
Bin-Yu Liu ◽  
Jin-Qiang Lu ◽  
Min Chen ◽  
...  

Ganoderic acid A from Ganoderma lucidum has the potential to prevent hyperlipidemia, modulates the composition of gut microbiota in hyperlipidemic mice, and significantly attenuates the liver metabolite profile in hyperlipidemic mice.


Sign in / Sign up

Export Citation Format

Share Document