Plasma glucagon-like peptide-1 responses to ingestion of protein with increasing doses of milk minerals rich in calcium

2021 ◽  
pp. 1-25
Author(s):  
Jonathan D Watkins ◽  
Harry A Smith ◽  
Aaron Hengist ◽  
Lise Høj Brunsgaard ◽  
Ulla Ramer Mikkelsen ◽  
...  

Abstract A high dose of whey protein hydrolysate fed with milk minerals rich in calcium (Capolac®) results in enhanced glucagon-like peptide-1 (GLP-1) concentrations in lean individuals, however the effect of different calcium doses ingested alongside protein is unknown. The present study assessed the dose response of calcium fed alongside 25 g whey protein hydrolysate on GLP-1 concentrations in individuals with overweight/obesity. Eighteen adults (mean ± SD: 8M/10F, 34 ± 18 years, 28.2 ± 2.9 kg∙m−2) completed 4 trials in a randomised, double-blind, crossover design. Participants consumed test solutions consisting of 25 g whey protein hydrolysate (CON), supplemented with 3179 mg (LOW), 6363 mg (MED), or 9547 mg (HIGH) Capolac® on different occasions, separated by at least 48 hours. The calcium content of test solutions equated to 65, 892, 1719 and 2547 mg, respectively. Arterialised-venous blood was sampled over 180 min to determine plasma concentrations of GLP-1TOTAL, GLP-17-36amide, insulin, glucose, non-esterified fatty acids (NEFA), and serum concentrations of calcium and albumin. Ad libitum energy intake was measured at 180 min. Time-averaged incremental area under the curve (iAUC) for GLP-1TOTAL (pmol·L−1·min−1) did not differ between CON (23 ± 4), LOW (25 ± 6), MED (24 ± 5), and HIGH (24 ± 6). Energy intake (kcal) did not differ between CON (940 ± 387), LOW (884 ± 345), MED (920 ± 334), and HIGH (973 ± 390). Co-ingestion of whey protein hydrolysate with Capolac® does not potentiate GLP-1 release in comparison to whey protein hydrolysate alone. The study was registered at clinical trials (NCT03819972).

2019 ◽  
Vol 59 (6) ◽  
pp. 2449-2462 ◽  
Author(s):  
Yung-Chih Chen ◽  
Harry A. Smith ◽  
Aaron Hengist ◽  
Oliver J. Chrzanowski-Smith ◽  
Ulla Ramer Mikkelsen ◽  
...  

Abstract Purpose To examine whether calcium type and co-ingestion with protein alter gut hormone availability. Methods Healthy adults aged 26 ± 7 years (mean ± SD) completed three randomized, double-blind, crossover studies. In all studies, arterialized blood was sampled postprandially over 120 min to determine GLP-1, GIP and PYY responses, alongside appetite ratings, energy expenditure and blood pressure. In study 1 (n = 20), three treatments matched for total calcium content (1058 mg) were compared: calcium citrate (CALCITR); milk minerals rich in calcium (MILK MINERALS); and milk minerals rich in calcium plus co-ingestion of 50 g whey protein hydrolysate (MILK MINERALS + PROTEIN). In study 2 (n = 6), 50 g whey protein hydrolysate (PROTEIN) was compared to MILK MINERALS + PROTEIN. In study 3 (n = 6), MILK MINERALS was compared to the vehicle of ingestion (water plus sucralose; CONTROL). Results MILK MINERALS + PROTEIN increased GLP-1 incremental area under the curve (iAUC) by ~ ninefold (43.7 ± 11.1 pmol L−1 120 min; p < 0.001) versus both CALCITR and MILK MINERALS, with no difference detected between CALCITR (6.6 ± 3.7 pmol L−1 120 min) and MILK MINERALS (5.3 ± 3.5 pmol L−1 120 min; p > 0.999). MILK MINERALS + PROTEIN produced a GLP-1 iAUC ~ 25% greater than PROTEIN (p = 0.024; mean difference: 9.1 ± 6.9 pmol L−1 120 min), whereas the difference between MILK MINERALS versus CONTROL was small and non-significant (p = 0.098; mean difference: 4.2 ± 5.1 pmol L−1 120 min). Conclusions When ingested alone, milk minerals rich in calcium do not increase GLP-1 secretion compared to calcium citrate. Co-ingesting high-dose whey protein hydrolysate with milk minerals rich in calcium increases postprandial GLP-1 concentrations to some of the highest physiological levels ever reported. Registered at ClinicalTrials.gov: NCT03232034, NCT03370484, NCT03370497.


2015 ◽  
Vol 102 (6) ◽  
pp. 1323-1331 ◽  
Author(s):  
Amy T Hutchison ◽  
Christine Feinle-Bisset ◽  
Penelope CE Fitzgerald ◽  
Scott Standfield ◽  
Michael Horowitz ◽  
...  

Nutrients ◽  
2016 ◽  
Vol 8 (1) ◽  
pp. 4 ◽  
Author(s):  
Natalie Luscombe-Marsh ◽  
Amy Hutchison ◽  
Stijn Soenen ◽  
Robert Steinert ◽  
Peter Clifton ◽  
...  

2019 ◽  
Vol 59 (3) ◽  
pp. 1135-1147 ◽  
Author(s):  
Melanie Martin ◽  
Diana Hagemann ◽  
Thinh Trung Nguyen ◽  
Lisa Schwarz ◽  
Sherif Khedr ◽  
...  

2019 ◽  
Vol 14 (1) ◽  
pp. 254-261 ◽  
Author(s):  
Rongchun Wang ◽  
Shenghua He ◽  
Yifan Xuan ◽  
Cuilin Cheng

Author(s):  
Carolina Soares Moura ◽  
Pablo Christiano Barboza Lollo ◽  
Priscila Neder Morato ◽  
Luciana Hisayama Nisishima ◽  
Everardo Magalhães Carneiro ◽  
...  

2020 ◽  
Vol 5 (5) ◽  
pp. 65-77
Author(s):  
K. M. K. Kebary ◽  
S. A. Husien ◽  
R. M. Badawi ◽  
M. A. M. Habib

2019 ◽  
Vol 240 (2) ◽  
pp. 271-286 ◽  
Author(s):  
Li Zhao ◽  
Chunfang Zhu ◽  
Meng Lu ◽  
Chi Chen ◽  
Xiaomin Nie ◽  
...  

Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are an ideal therapy for type 2 diabetes and, as of recently, for obesity. In contrast to visceral fat, subcutaneous fat appears to be protective against metabolic diseases. Here, we aimed to explore whether liraglutide, a GLP-1RA, could redistribute body fat via regulating lipid metabolism in different fat depots. After being fed a high-fat diet for 8 weeks, 50 male Wistar and Goto-Kakizaki rats were randomly divided into a normal control group, a diabetic control group, low- and high-dose liraglutide-treated groups and a diet-control group. Different doses of liraglutide (400 μg/kg/day or 1200 μg/kg/day) or an equal volume of normal saline were administered to the rats subcutaneously once a day for 12 weeks. Body composition and body fat deposition were measured by dual-energy X-ray absorptiometry and MRI. Isotope tracers were infused to explore lipid metabolism in different fat depots. Quantitative real-time PCR and Western blot analyses were conducted to evaluate the expression of adipose-related genes. The results showed that liraglutide decreased visceral fat and relatively increased subcutaneous fat. Lipogenesis was reduced in visceral white adipose tissue (WAT) but was elevated in subcutaneous WAT. Lipolysis was also attenuated, and fatty acid oxidation was enhanced. The mRNA expression levels of adipose-related genes in different tissues displayed similar trends after liraglutide treatment. In addition, the expression of browning-related genes was upregulated in subcutaneous WAT. Taken together, the results suggested that liraglutide potentially redistributes body fat and promotes browning remodeling in subcutaneous WAT to improve metabolic disorders.


2018 ◽  
Vol 28 (6) ◽  
pp. 602-610
Author(s):  
Linn Bøhler ◽  
Sílvia Ribeiro Coutinho ◽  
Jens F. Rehfeld ◽  
Linda Morgan ◽  
Catia Martins

Active, as opposed to inactive, individuals are able to adjust their energy intake after preloads of different energy contents. The mechanisms responsible for this remain unknown. This study examined differences in plasma concentration of appetite-related hormones in response to breakfasts of different energy contents, between active and inactive men. Sixteen healthy nonobese (body mass index = 18.5–27 kg/m2) adult males (nine active and seven inactive) participated in this study. Participants were given a high-energy (570 kcal) or a low-energy (205 kcal) breakfast in a random order. Subjective feelings of appetite and plasma concentrations of active ghrelin, active glucagon-like peptide-1, total peptide YY (PYY), cholecystokinin, and insulin were measured in fasting and every 30 min up to 2.5 hr, in response to both breakfasts. Mixed analysis of variance (fat mass [in percentage] as a covariate) revealed a higher concentration of active ghrelin and lower concentration of glucagon-like peptide-1, and cholecystokinin after the low-energy breakfast (p < .001 for all). Postprandial concentration of PYY was greater after the high energy compared with the low energy, but for inactive participants only (p = .014). Active participants had lower postprandial concentrations of insulin than inactive participants (p < .001). Differences in postprandial insulin between breakfasts were significantly lower in active compared with inactive participants (p < .001). Physical activity seems to modulate the postprandial plasma concentration of insulin and PYY after the intake of breakfasts of different energy contents, and that may contribute, at least partially, to the differences in short-term appetite control between active and inactive individuals.


Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3362
Author(s):  
Ji Eun Shin ◽  
Seok Jun Park ◽  
Seung Il Ahn ◽  
Se-Young Choung

Sarcopenia, a loss of skeletal muscle mass and function, is prevalent in older people and associated with functional decline and mortality. Protein supplementation is necessary to maintain skeletal muscle mass and whey protein hydrolysates have the best nutrient quality among food proteins. In the first study, C57BL/6 mice were subjected to immobilization for 1 week to induce muscle atrophy. Then, mice were administered with four different whey protein hydrolysates for 2 weeks with continuous immobilization. Among them, soluble whey protein hydrolysate (WP-S) had the greatest increase in grip strength, muscle weight, and cross-sectional area of muscle fiber than other whey protein hydrolysates. To investigate the molecular mechanism, we conducted another experiment with the same experimental design. WP-S significantly promoted the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway and inhibited the PI3K/Akt/forkhead box O (FoxO) pathway. In addition, it increased myosin heavy chain (MyHC) expression in both the soleus and quadriceps and changed MyHC isoform expressions. In conclusion, WP-S attenuated muscle atrophy induced by immobilization by enhancing the net protein content regulating muscle protein synthesis and degradation. Thus, it is a necessary and probable candidate for developing functional food to prevent sarcopenia.


Sign in / Sign up

Export Citation Format

Share Document