Learning in Helicoverpa armigera (Lepidoptera: Noctuidae): a new look at the behaviour and control of a polyphagous pest

1999 ◽  
Vol 89 (3) ◽  
pp. 201-207 ◽  
Author(s):  
J.P. Cunningham ◽  
M.P. Zalucki ◽  
S.A. West

AbstractRecent experimental evidence has shown that learning occurs in the host selection behaviour of Helicoverpa armigera (Hübner), one of the world‘s most important agricultural pests. This paper discusses how the occurrence of learning changes our understanding of the host selection behaviour of this polyphagous moth. Host preferences determined from previous laboratory studies may be vastly different from preferences exhibited by moths in the field, where the abundance of particular hosts may be more likely to determine host preference. In support of this prediction, a number of field studies have shown that the ‘attractiveness’ of different hosts for H. armigera oviposition may depend on the relative abundance of these host species. Insect learning may play a fundamental role in the design and application of present and future integrated pest management strategies such as the use of host volatiles, trap crops and resistant crop varieties for monitoring and controlling this important pest species.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fathiya M. Khamis ◽  
Fidelis L. O. Ombura ◽  
Inusa J. Ajene ◽  
Komivi S. Akutse ◽  
Sevgan Subramanian ◽  
...  

AbstractWhiteflies (Hemiptera: Aleyrodidae) are devastating agricultural pests of economic importance vectoring pathogenic plant viruses. Knowledge on their diversity and distribution in Kenya is scanty, limiting development of effective sustainable management strategies. The present study is aimed at identifying whitefly pest species present in Kenya across different agroecological zones and establish predictive models for the most abundant species in Africa. Whiteflies were sampled in Kenya from key crops known to be severely infested and identified using 16S rRNA markers and complete mitochondrial genomes. Four whitefly species were identified: Aleyrodes proletella, Aleurodicus dispersus, Bemisia afer and Trialeurodesvaporariorum, the latter being the most dominant species across all the agroecology. The assembly of complete mitogenomes and comparative analysis of all 13 protein coding genes confirmed the identities of the four species. Furthermore, prediction spatial models indicated high climatic suitability of T. vaporariorum in Africa, Europe, Central America, parts of Southern America, parts of Australia, New Zealand and Asia. Consequently, our findings provide information to guide biosecurity agencies on protocols to be adopted for precise identification of pest whitefly species in Kenya to serve as an early warning tool against T. vaporariorum invasion into unaffected areas and guide appropriate decision-making on their management.


2019 ◽  
Vol 19 (4) ◽  
Author(s):  
Catherine M Little ◽  
Thomas W Chapman ◽  
N Kirk Hillier

AbstractThe past 100 yr have seen dramatic philosophical shifts in our approach to controlling or managing pest species. The introduction of integrated pest management in the 1970s resulted in the incorporation of biological and behavioral approaches to preserve ecosystems and reduce reliance on synthetic chemical pesticides. Increased understanding of the local ecosystem, including its structure and the biology of its species, can improve efficacy of integrated pest management strategies. Pest management strategies incorporating insect learning paradigms to control insect pests or to use insects to control other pests can mediate risk to nontarget insects, including pollinators. Although our understanding of insect learning is in its early stages, efforts to integrate insect learning into pest management strategies have been promising. Due to considerable differences in cognitive abilities among insect species, a case-by-case assessment is needed for each potential application of insect learning within a pest management strategy.


2019 ◽  
Vol 112 (4) ◽  
pp. 388-401 ◽  
Author(s):  
Luke R Tembrock ◽  
Alicia E Timm ◽  
Frida A Zink ◽  
Todd M Gilligan

Abstract The Old World bollworm, Helicoverpa armigera (Hübner), is one of the most destructive agricultural pests worldwide. It was first recorded in Brazil in 2013, yet despite this recent introduction, H. armigera has spread throughout much of Latin America. Where H. armigera has become established, it is displacing or hybridizing with the congeneric New World pest Helicoverpa zea. In addition to the adaptive qualities that make H. armigera a megapest, such as broad range pesticide resistance, the spread of H. armigera in the New World may have been hastened by multiple introductions into South America and/or the Caribbean. The recent expansion of the range of H. armigera into the New World is analyzed herein using mtDNA of samples from South America, the Caribbean Basin, and the Florida Peninsula. Phylogeographic analyses reveal that several haplotypes are nearly ubiquitous throughout the New World and native range of H. armigera, but several haplotypes have limited geographic distribution from which a secondary introduction with Euro-African origins into the New World is inferred. In addition, host–haplotype correlations were analyzed to see whether haplotypes might be restricted to certain crops. No specialization was found; however, some haplotypes had a broader host range than others. These results suggest that the dispersal of H. armigera in the New World is occurring from both natural migration and human-mediated introductions. As such, both means of introduction should be monitored to prevent the spread of H. armigera into areas such as the United States, Mexico, and Canada, where it is not yet established.


Author(s):  
Neil W. Forrester ◽  
Matthew Cahill ◽  
Lisa J. Bird ◽  
Jacquelyn K. Layland

SummaryIn response to field pyrethroid failures against Helicoverpa armigera (Hübner) in early 1983, an insecticide resistance management (IRM) strategy was introduced for insect control in summer crops in eastern Australia. The aims of this strategy were to contain the pyrethroid resistance problem, to prevent re-selection of historical endosulfan resistance (both curative IRM) and to avoid any future problems with organophosphate/carbamate resistance (preventative IRM). An alternation strategy was adopted which was based on the rotation of unrelated chemical groups on a per generation basis, along with a strong recommendation for the use of ovicidal mixtures. These chemical countermeasures were then integrated with other non-chemical control methods (biological and cultural) into a workable integrated pest management programme. The restrictions were applied to all Helicoverpa armigera susceptible crops (including cereals, oilseeds, grain legumes, tomatoes, tobacco and cotton) and even to other co-incident pest species. From its inception, compliance with the voluntary strategy has been exceptional.


2020 ◽  
Vol 72 (2) ◽  
pp. 271-278
Author(s):  
Monika Mishra ◽  
Aarti Sharma ◽  
Vinay Dagar ◽  
Sarita Kumar

Helicoverpa armigera is a global agricultural pest of serious concern. Continued use of chemical insecticides as control measures has raised grave health and environment concerns, necessitating a search for botanicals as safe alternatives. The current study investigates the effects of ?-sitosterol, a bioactive phytocomponent in Thevetia neriifolia, on the growth and development, as well as on midgut enzymes of H. armigera. Dietary ?-sitosterol produced dose-dependent systemic toxicity and growth inhibitory effects in H. armigera; the most significant effects were obtained with 10 ?g/mL dietary ?-sitosterol. Higher prepupal and pupal mortality in comparison to larval mortality and a comparatively greater reduction in average weight gained by later instars point to cumulative effects of ?-sitosterol. The delayed effects were ascertained by the 82.05%-57.89% reduction in adult emergence in comparison to 95.02% emergence in controls. Dose-dependent effects of ?-sitosterol were observed as significantly decreased enzyme activities of alanine aminotransaminase (ALT), aspartate aminotransaminase (AST) and alkaline phosphatase (ALP) in the larval midgut. Suppression of enzyme activity was obtained in the order ALT>AST>ALP. Impaired activity of gut enzymes possibly lowered the energy reserves and affected nutrient transport through the gut epithelium, affecting the growth and development of H. armigera. Our study points to a promising use of ?-sitosterol against H. armigera, although further examination and field studies are needed to ascertain its possible use in control programs.


Author(s):  
Yan-Li Li ◽  
Yan-Xue Li ◽  
Xiao-Pei Wang ◽  
Xin-Le Kang ◽  
Ke-Qin Guo ◽  
...  

G protein-coupled receptors (GPCRs) are the largest family of membrane receptors in animals and humans, which transmit various signals from the extracellular environment into cells. Studies have reported that several GPCRs transmit the same signal; however, the mechanism is unclear. In the present study, we identified all 122 classical GPCRs from the genome of Helicoverpa armigera, a lepidopteran pest species. Twenty-four GPCRs were identified as upregulated at the metamorphic stage by comparing the transcriptomes of the midgut at the metamorphic and feeding stages. Nine of them were confirmed to be upregulated at the metamorphic stage. RNA interference in larvae revealed the prolactin-releasing peptide receptor (PRRPR), smoothened (SMO), adipokinetic hormone receptor (AKHR), and 5-hydroxytryptamine receptor (HTR) are involved in steroid hormone 20-hydroxyecdysone (20E)-promoted pupation. Frizzled 7 (FZD7) is involved in growth, while tachykinin-like peptides receptor 86C (TKR86C) had no effect on growth and pupation. Via these GPCRs, 20E regulated the expression of different genes, respectively, including Pten (encoding phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase), FoxO (encoding forkhead box O), BrZ7 (encoding broad isoform Z7), Kr-h1 (encoding Krüppel homolog 1), Wnt (encoding Wingless/Integrated) and cMyc, with hormone receptor 3 (HHR3) as their common regulating target. PRRPR was identified as a new 20E cell membrane receptor using a binding assay. These data suggested that 20E, via different GPCRs, regulates different gene expression to integrate growth and development.


Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 885
Author(s):  
Thayssa M. R. Oliveira ◽  
Frida A. Zink ◽  
Renato C. Menezes ◽  
Érico C. Dianese ◽  
Karina C. Albernaz-Godinho ◽  
...  

Helicoverpa armigera (Hübner) is one of the most important agricultural pests in the world. This historically Old World species was first reported in Brazil in 2013 and has since spread throughout much of South America and into the Caribbean. Throughout North America, H. armigera surveys are ongoing to detect any incursions. Each trap is capable of capturing hundreds of native Helicoverpa zea (Boddie). The two species cannot be separated without genitalic dissection or molecular methods. A ddPCR assay is currently used to screen large trap samples, but this equipment is relatively uncommon and expensive. Here, we optimized a newly designed assay for accurate and repeatable detection of H. armigera in bulk samples across both ddPCR and less costly, and more common, real-time PCR methods. Improvements over previously designed assays were sought through multiple means. Our results suggest bulk real-time PCR assays can be improved through changes in DNA extraction and purification, so that real-time PCR can be substituted for ddPCR in screening projects. While ddPCR remains a more sensitive method for detection of H. armigera in bulk samples, the improvements in assay design, DNA extraction, and purification presented here also enhance assay performance over previous protocols.


Sign in / Sign up

Export Citation Format

Share Document