Influence of Flooding and Soil Moisture Content on Elongation of Sugar cane in Trinidad

1981 ◽  
Vol 17 (4) ◽  
pp. 403-406
Author(s):  
F. A. Gumbs ◽  
L. A. Simpson

SUMMARYThe total growth increment of sugar cane stalks from 13 to 22 weeks after planting was 55% greater in elevated than depressed areas in fields flooded intermittently during the period of measurement. The weekly growth increments were 137–9% greater in elevated than depressed areas, especially when soil moisture was high. The cane was on top of high ridges but water stood up to 10 cm deep over the top of the ridges in depressed areas for up to 5 or 6 days after rain and at varying depths below the top for several more days. Provided the soil was not submerged, tillers elongated most when the soil profile was saturated or nearly so; mere waterlogging without submergence seems not to damage cane. Tiller elongation and soil moisture were well correlated regardless of depth of sampling between 0 and 45 cm, but different relations were obtained for elevated drained areas and depressed areas subject to submergence.

2010 ◽  
Vol 19 (7) ◽  
pp. 961 ◽  
Author(s):  
Laura L. Bourgeau-Chavez ◽  
Gordon C. Garwood ◽  
Kevin Riordan ◽  
Benjamin W. Koziol ◽  
James Slawski

Water content reflectometry is a method used by many commercial manufacturers of affordable sensors to electronically estimate soil moisture content. Field‐deployable and handheld water content reflectometry probes were used in a variety of organic soil‐profile types in Alaska. These probes were calibrated using 65 organic soil samples harvested from these burned and unburned, primarily moss‐dominated sites in the boreal forest. Probe output was compared with gravimetrically measured volumetric moisture content, to produce calibration algorithms for surface‐down‐inserted handheld probes in specific soil‐profile types, as well as field‐deployable horizontally inserted probes in specific organic soil horizons. General organic algorithms for each probe type were also developed. Calibrations are statistically compared to determine their suitability. The resulting calibrations showed good agreement with in situ validation and varied from the default mineral‐soil‐based calibrations by 20% or more. These results are of particular interest to researchers measuring soil moisture content with water content reflectometry probes in soils with high organic content.


1999 ◽  
Vol 18 (3) ◽  
pp. 109-115 ◽  
Author(s):  
A. K. Alva ◽  
O. Prakash ◽  
Ali Fares ◽  
Arthur G. Hornsby

2010 ◽  
Vol 393 (3-4) ◽  
pp. 174-185 ◽  
Author(s):  
Vahedberdi Sheikh ◽  
Emiel van Loon ◽  
Rudi Hessel ◽  
Victor Jetten

HortScience ◽  
2014 ◽  
Vol 49 (5) ◽  
pp. 653-661 ◽  
Author(s):  
Quanen Guo ◽  
Tianwen Guo ◽  
Zhongming Ma ◽  
Zongxian Che ◽  
Lili Nan ◽  
...  

The relationship between spatial and temporal dynamics of major salt ions and their toxicology is still unclear, particularly in perennial orchard fields. A seasonal soil sampling was conducted from Apr. to Oct. 2011 in a salinized orchard soil in semiarid northwest China. Soil moisture content and concentrations of total soluble salt and eight salt ions were measured every 2 weeks in the soil at 0 to 2, 2 to 5, 5 to 10, 10 to 15, 15 to 20, 20 to 25, 25 to 40, 40 to 60, 60 to 80, and 80 to 120 cm during the growing period of apple trees. Soil moisture content decreased early in the growth season (Period 1) but with increasing rainfall in the middle of growing season (Period 2 and Period 3) and reached a maximum at late season (Period 4) at all depths. Soil salt concentration increased along with soil profile, particularly in the 60- to 120-cm soil layer at all periods. The highest soil salt level was observed in Period 4. The contents of HCO3–, Ca2+, and Mg2+ were almost uniform in all soil layers, but the contents of Cl–, SO42–, and Na+ increased with soil layer. The content of K+ decreased from the upper to the deeper layers of soil profile. The distribution of CO32– had a high temporal and spatial heterogeneity with soil depths and season. Analysis of the charge balance on positive and negative salt ions indicated that the horizontal movement of ions and the transfer of soil water were likely the driving factors affecting soil salinization. The movement of Na+ and Mg2+ ions in the top soil may be responsible for rhizospheric ions composition and toxin effect to restrain apple tree growth in the early growth period.


1980 ◽  
Vol 94 (1) ◽  
pp. 251-253 ◽  
Author(s):  
L. W. Hanna ◽  
N. Siam

The neutron method of estimating soil moisture content in the field has the advantage that once access tubes are installed no further disturbance to the site is necessary and readings can be taken repeatedly throughout the soil profile at a fraction of the time necessary for the gravitational method. However, measurement of moisture content in the surface layer of soil, the top 10 cm, has proved difficult since the source and detector must be at a depth less than the sphere of influence allowing some neutrons to escape to the atmosphere. This air-soil interface effect can lead to an underestimation of moisture content which is greatest in wet soil (Van Bavel, Hood & Underwood, 1954).


2020 ◽  
Vol 13 (1) ◽  
pp. 107
Author(s):  
Andrzej Brandyk ◽  
Edmund Kaca ◽  
Ryszard Oleszczuk ◽  
Janusz Urbański ◽  
Jan Jadczyszyn

The search for simple models of drainage–irrigation systems functioning and management has still been an important research objective. Therefore, we presented a conceptual model based on groundwater dynamics equation along with proper assumptions on water equivalent of transient porosity-i.e., storage in the soil profile based on the long-term experience of the research on drainage-sub-irrigation systems. Several parameters have been incorporated in the model to effectively and comprehensively describe drainage/irrigation time, leakage from the soil profile, the soil moisture content in the root zone, and the shape of the groundwater table on the drainage–sub-irrigation plot. The model was successfully validated on groundwater level data in ditch midspacing on an experimental site located within a valley sub-irrigation system with the advantage of a relatively simple representation of flows through the soil profile. The robust character of the conceptual equation of groundwater dynamics, as well as the approach to its’ parameters, were proved through a close match between the model and observations. This promotes the capacities of the proposed modeling procedure to conceptualize drainage-irrigation development with the impact of external and internal sources of water. The potential was offered for the evaluation of water management practices in a valley system influenced by horizontal inflows from surrounding areas as indicated by calibration results. Future challenges were revealed in terms of water exchange between the plots and validation of soil moisture content modeling.


2011 ◽  
Vol 28 (1) ◽  
pp. 85-91 ◽  
Author(s):  
Run-chun LI ◽  
Xiu-zhi ZHANG ◽  
Li-hua WANG ◽  
Xin-yan LV ◽  
Yuan GAO

2001 ◽  
Vol 66 ◽  
Author(s):  
M. Aslanidou ◽  
P. Smiris

This  study deals with the soil moisture distribution and its effect on the  potential growth and    adaptation of the over-story species in north-east Chalkidiki. These  species are: Quercus    dalechampii Ten, Quercus  conferta Kit, Quercus  pubescens Willd, Castanea  sativa Mill, Fagus    moesiaca Maly-Domin and also Taxus baccata L. in mixed stands  with Fagus moesiaca.    Samples of soil, 1-2 kg per 20cm depth, were taken and the moisture content  of each sample    was measured in order to determine soil moisture distribution and its  contribution to the growth    of the forest species. The most important results are: i) available water  is influenced by the soil    depth. During the summer, at a soil depth of 10 cm a significant  restriction was observed. ii) the    large duration of the dry period in the deep soil layers has less adverse  effect on stands growth than in the case of the soil surface layers, due to the fact that the root system mainly spreads out    at a soil depth of 40 cm iii) in the beginning of the growing season, the  soil moisture content is    greater than 30 % at a soil depth of 60 cm, in beech and mixed beech-yew  stands, is 10-15 % in    the Q. pubescens  stands and it's more than 30 % at a soil depth of 60 cm in Q. dalechampii    stands.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rehman S. Eon ◽  
Charles M. Bachmann

AbstractThe advent of remote sensing from unmanned aerial systems (UAS) has opened the door to more affordable and effective methods of imaging and mapping of surface geophysical properties with many important applications in areas such as coastal zone management, ecology, agriculture, and defense. We describe a study to validate and improve soil moisture content retrieval and mapping from hyperspectral imagery collected by a UAS system. Our approach uses a recently developed model known as the multilayer radiative transfer model of soil reflectance (MARMIT). MARMIT partitions contributions due to water and the sediment surface into equivalent but separate layers and describes these layers using an equivalent slab model formalism. The model water layer thickness along with the fraction of wet surface become parameters that must be optimized in a calibration step, with extinction due to water absorption being applied in the model based on equivalent water layer thickness, while transmission and reflection coefficients follow the Fresnel formalism. In this work, we evaluate the model in both field settings, using UAS hyperspectral imagery, and laboratory settings, using hyperspectral spectra obtained with a goniometer. Sediment samples obtained from four different field sites representing disparate environmental settings comprised the laboratory analysis while field validation used hyperspectral UAS imagery and coordinated ground truth obtained on a barrier island shore during field campaigns in 2018 and 2019. Analysis of the most significant wavelengths for retrieval indicate a number of different wavelengths in the short-wave infra-red (SWIR) that provide accurate fits to measured soil moisture content in the laboratory with normalized root mean square error (NRMSE)< 0.145, while independent evaluation from sequestered test data from the hyperspectral UAS imagery obtained during the field campaign obtained an average NRMSE = 0.169 and median NRMSE = 0.152 in a bootstrap analysis.


Sign in / Sign up

Export Citation Format

Share Document