scholarly journals A Wet Excavation Method for Root/Shoot Studies of Pearl Millet on the Sandy Soils of the Sahel

1994 ◽  
Vol 30 (3) ◽  
pp. 329-336 ◽  
Author(s):  
M. V. K. Sivakumar ◽  
S. A. Salaam

SUMMARYRoot/shoot relations of two cultivars of pearl millet (Pennisetum glaucum) were studied on a sandy soil at Sadore in Niger using a wet excavation method. For the first 10 days after emergence (DAE), the length of the seminal root showed an exponential growth rate while plant height increased more or less linearly. The maximum rooting depth for millet was 168 cm and the maximum number of root axes and primary laterals, 172 per plant. Root length continued to increase up to 75 DAE, the maximum length exceeding 5000 cm per plant. The proportion of total day matter accumulated in the roots decreased from 30% in the early stages to less than 20% by maturity. The wet excavation method is a promising technique for the rapid removal of intact root systems of pearl millet from the sandy soils of the Sahel.

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 546B-546
Author(s):  
Kirk D. Larson

Each year, 500,000,000 bare-root plants (crowns) are used to establish strawberry plantings in California. Careful placement of plants in the planting holes is a critical determinant of plant growth and productivity, but large-rooted crowns are difficult to plant correctly. Use of uniform plant material would facilitate proper planting. I conducted a study in 1997–98 to determine the influence of three root pruning treatments on performance of `Camarosa' bare-root strawberry plants. Crowns were machine-dug from a nursery on 27 Oct. 1997. Two-hundred-forty plants were selected for uniformity of size, and root systems of all selected plants were >12.7 cm in length. Root systems of individual plants were randomly subjected to three pruning treatments: nonpruned (NP), pruned to 8.9 cm in length (P1), or pruned to 4.45 cm in length (P2). Twenty plants were randomly selected from each pruning treatment, washed, divided into excised and intact root tissues, and dried at 70 °C for 6 days. Pruning resulted in the removal of 23% and 78% of root dry mass for plants in the P1 and P2 treatments, respectively. For each treatment, the 60 remaining plants were established in raised beds at the Univ. of California South Coast R.E.C. in Irvine on 1 Nov. 1997. Experimental design was a RCB, with one 20-plant plot per treatment in each of three replicate blocks. There was no plant mortality and no difference among treatments in plant canopy diameter in March (mean diam. = 36.7 cm). Fruit yields were determined for each plot at weekly intervals from 1 Feb. to 18 Apr. 1998. There was no effect of pruning on yield or fruit size, suggesting that strawberry root systems have considerable regenerative ability.


2021 ◽  
Vol 13 (15) ◽  
pp. 8460
Author(s):  
Armel Rouamba ◽  
Hussein Shimelis ◽  
Inoussa Drabo ◽  
Mark Laing ◽  
Prakash Gangashetty ◽  
...  

Pearl millet (Pennisetum glaucum) is a staple food crop in Burkina Faso that is widely grown in the Sahelian and Sudano-Sahelian zones, characterised by poor soil conditions and erratic rainfall, and high temperatures. The objective of this study was to document farmers’ perceptions of the prevailing constraints affecting pearl millet production and related approaches to manage the parasitic weeds S. hermonthica. The study was conducted in the Sahel, Sudano-Sahelian zones in the North, North Central, West Central, Central Plateau, and South Central of Burkina Faso. Data were collected through a structured questionnaire and focus group discussions involving 492 participant farmers. Recurrent drought, S. hermonthica infestation, shortage of labour, lack of fertilisers, lack of cash, and the use of low-yielding varieties were the main challenges hindering pearl millet production in the study areas. The majority of the respondents (40%) ranked S. hermonthica infestation as the primary constraint affecting pearl millet production. Respondent farmers reported yield losses of up to 80% due to S. hermonthica infestation. 61.4% of the respondents in the study areas had achieved a mean pearl millet yields of <1 t/ha. Poor access and the high cost of introduced seed, and a lack of farmers preferred traits in the existing introduced pearl millet varieties were the main reasons for their low adoption, as reported by 32% of respondents. S. hermonthica management options in pearl millet production fields included moisture conservation using terraces, manual hoeing, hand weeding, use of microplots locally referred to as ‘zaï’, crop rotation and mulching. These management techniques were ineffective because they do not suppress the below ground S. hermonthica seed, and they are difficult to implement. Integrated management practices employing breeding for S. hermonthica resistant varieties with the aforementioned control measures could offer a sustainable solution for S. hermonthica management and improved pearl millet productivity in Burkina Faso.


1975 ◽  
Vol 5 (1) ◽  
pp. 109-121 ◽  
Author(s):  
D. C. F. Fayle

Extension of the root system and stem during the first 30 years of growth of plantation-grown red pine (Pinusresinosa Ait.) on four sites was deduced by root and stem analyses. Maximum rooting depth was reached in the first decade and maximum horizontal extension of roots was virtually complete between years 15 and 20. The main horizontal roots of red pine seldom exceed 11 m in length. Elongation of vertical and horizontal roots was examined in relation to moisture availability and some physical soil conditions. The changing relations within the tree in lineal dimensions and annual elongation of the roots and stem are illustrated. The development of intertree competition above and below ground is considered.


2016 ◽  
Vol 26 (5) ◽  
pp. 604-613 ◽  
Author(s):  
John E. Beck ◽  
Michelle S. Schroeder-Moreno ◽  
Gina E. Fernandez ◽  
Julie M. Grossman ◽  
Nancy G. Creamer

Summer cover crop rotations, compost, and vermicompost additions can be important strategies for transition to organic production that can provide various benefits to crop yields, nitrogen (N) availability, and overall soil health, yet are underused in strawberry (Fragaria ×ananassa) production in North Carolina. This study was aimed at evaluating six summer cover crop treatments including pearl millet (Pennisetum glaucum), soybean (Glycine max), cowpea (Vigna unguiculata), pearl millet/soybean combination, pearl millet/cowpea combination, and a no cover crop control, with and without vermicompost additions for their effects on strawberry growth, yields, nutrient uptake, weeds, and soil inorganic nitrate-nitrogen and ammonium-nitrogen in a 2-year field experiment. Compost was additionally applied before seeding cover crops and preplant N fertilizer was reduced by 67% to account for organic N additions. Although all cover crops (with compost) increased soil N levels during strawberry growth compared with the no cover crop treatment, cover crops did not impact strawberry yields in the first year of the study. In the 2nd year, pearl millet cover crop treatments reduced total and marketable strawberry yields, and soybean treatments reduced marketable strawberry yields when compared with the no cover crop treatment, whereas vermicompost additions increased strawberry biomass and yields. Results from this study suggest that vermicompost additions can be important sustainable soil management strategies for transitional and certified organic strawberry production. Summer cover crops integrated with composts can provide considerable soil N, reducing fertilizer needs, but have variable responses on strawberry depending on the specific cover crop species or combination. Moreover, these practices are suitable for both organic and conventional strawberry growers and will benefit from longer-term studies that assess these practices individually and in combination and other benefits in addition to yields.


Sign in / Sign up

Export Citation Format

Share Document