scholarly journals The Neogene–Recent Hatay Graben, South Central Turkey: graben formation in a setting of oblique extension (transtension) related to post-collisional tectonic escape

2008 ◽  
Vol 145 (6) ◽  
pp. 800-821 ◽  
Author(s):  
SARAH J. BOULTON ◽  
ALASTAIR H. F. ROBERTSON

AbstractStructural data and a regional tectonic interpretation are given for the NE–SW-trending Hatay Graben, southern Turkey, within the collision zone of the African (Arabian) and Eurasian (Anatolian) plates. Regional GPS and seismicity data are used to shed light on the recent tectonic development of the Hatay Graben. Faults within Upper Cretaceous to Quaternary sediments are categorized as of first-, second- and third-order type, depending on their scale, location and character. Normal, oblique and strike-slip faults predominate throughout the area.The flanks of the graben are dominated by normal faults, mainly striking parallel to the graben, that is, 045–225°. In contrast, the graben axis exhibits strike-slip faults, trending 100–200°, together with normal faults striking 040–060° and 150–190° (a subset strikes 110–130°). Similarly orientated normal faults occur throughout Upper Cretaceous to Pliocene sediments, whereas strike-slip faults are mostly within Pliocene sediments near the graben axis. Stress inversion of slickenline data from mostly Pliocene sediments at ten suitable locations (all near the graben axis) show that σ3 directions (minimum stress axis ≈ extension direction) are uniform in the northeast of the graben but orientated at a high angle to the graben margins. More variable σ3 directions in the southwest may reflect local block rotations. During Miocene times, the Arabian and Anatolian plates collided, forming a foreland basin associated with flexurally controlled normal faulting. During the Late Miocene there was a transition from extension to transtension (oblique extension). The neotectonic Hatay Graben formed during the Plio-Quaternary in a transtensional setting. In the light of modern and ancient comparisons, it is suggested that contemporaneous strain was compartmentalized into large-scale normal faults on the graben margins and mainly small-scale strike-slip faults near the graben axis. Overall, the graben reflects Plio-Quaternary westward tectonic escape from a collision zone towards the east to a pre- or syn-collisional zone to the west in the Mediterranean Sea.

2004 ◽  
Vol 141 (5) ◽  
pp. 565-572 ◽  
Author(s):  
YUVAL BARTOV ◽  
AMIR SAGY

A newly discovered active small-scale pull-apart (Mor structure), located in the western part of the Dead Sea Basin, shows recent basin-parallel extension and strike-slip faulting, and offers a rare view of pull-apart internal structure. The Mor structure is bounded by N–S-trending strike-slip faults, and cross-cut by low-angle, E–W-trending normal faults. The geometry of this pull-apart suggests that displacement between the two stepped N–S strike-slip faults of the Mor structure is transferred by the extension associated with the normal faults. The continuing deformation in this structure is evident by the observation of at least three deformation episodes between 50 ka and present. The calculated sinistral slip-rate is 3.5 mm/yr over the last 30 000 years. This slip rate indicates that the Mor structure overlies the currently most active strike-slip fault within the western border of the Dead Sea pull-apart. The Mor structure is an example of a small pull-apart basin developed within a larger pull-apart. This type of hierarchy in pull-apart structures is an indication for their ongoing evolution.


2018 ◽  
Vol 40 (1) ◽  
pp. 309 ◽  
Author(s):  
G. Α. Georgiadis ◽  
M. D. Tranos ◽  
D. M. Mountrakis

The boundary between Internal Hellenides and the Hellenic hinterland is exposed in the southern part of the Athos peninsula as a NE-SW trending contact between the Serbomacedonian massif and the Circum-Rhodope Belt. The main tectonic features and deformation of the area during late- and post-alpine times have been investigated in order to understand better the late orogenic processes that led to the present arrangement of this boundary. The field study showed that the prevailing structures in the southern Athos peninsula are an asymmetric, SW-plunging, NWverging mega-scale antiform and a NE-SW striking left-lateral shear zone. These structures are the result of a transpressional deformation that initiated at least since the Eocene under ductile, syn-metamorphic (low-greenschist fades) conditions and progressively changed during the Oligocene-Early Miocene to brittle conditions with E-W striking reverse faults-thrusts and NNW-SSE striking right-lateral and NESW striking left-lateral strike-slip faults. This deformation waned in Middle Miocene changing to transtension with E- W striking, left-lateral strike-slip and NW-SE rightlateral oblique to normal faults. Since the Late Miocene an extensional regime dominates the area with the least principal stress axis (σ3) orientated NE-SW during Late Miocene - Pliocene andN-Sfrom Early Pleistocene -present


2021 ◽  
Author(s):  
Nemanja Krstekanic ◽  
Liviu Matenco ◽  
Uros Stojadinovic ◽  
Ernst Willingshofer ◽  
Marinko Toljić ◽  
...  

<p>The Carpatho-Balkanides of south-eastern Europe is a double 180° curved orogenic system. It is comprised of a foreland-convex orocline, situated in the north and east and a backarc-convex orocline situated in the south and west. The southern orocline of the Carpatho-Balkanides orogen formed during the Cretaceous closure of the Alpine Tethys Ocean and collision of the Dacia mega-unit with the Moesian Platform. Following the main orogen-building processes, the Carpathians subduction and Miocene slab retreat in the West and East Carpathians have driven the formation of the backarc-convex oroclinal bending in the south and west. The orocline formed during clockwise rotation of the Dacia mega-unit and coeval docking against the Moesian indenter. This oroclinal bending was associated with a Paleocene-Eocene orogen-parallel extension that exhumed the Danubian nappes of the South Carpathians and with a large late Oligocene – middle Miocene Circum-Moesian fault system that affected the orogenic system surrounding the Moesian Platform along its southern, western and northern margins. This fault system is composed of various segments that have different and contrasting types of kinematics, which often formed coevally, indicating a large degree of strain partitioning during oroclinal bending. It includes the curved Cerna and Timok faults that cumulate up to 100 km of dextral offset, the lower offset Sokobanja-Zvonce and Rtanj-Pirot dextral strike-slip faults, associated with orogen parallel extension that controls numerous intra-montane basins and thrusting of the western Balkans units over the Moesian Platform. We have performed a field structural study in order to understand the mechanisms of deformation transfer and strain partitioning around the Moesian indenter during oroclinal bending by focusing on kinematics and geometry of large-scale faults within the Circum-Moesian fault system.</p><p>Our structural analysis shows that the major strike-slip faults are composed of multi-strand geometries associated with significant strain partitioning within tens to hundreds of metres wide deformation zones. Kinematics of the Circum-Moesian fault system changes from transtensional in the north, where the formation of numerous basins is controlled by the Cerna or Timok faults, to strike-slip and transpression in the south, where transcurrent offsets are gradually transferred to thrusting in the Balkanides. The characteristic feature of the whole system is splaying of major faults to facilitate movements around the Moesian indenter. Splaying towards the east connects the Circum-Moesian fault system with deformation observed in the Getic Depression in front of the South Carpathians, while in the south-west the Sokobanja-Zvonce and Rtanj-Pirot faults splay off the Timok Fault. These two faults are connected by coeval E-W oriented normal faults that control several intra-montane basins and accommodate orogen-parallel extension. We infer that all these deformations are driven by the roll-back of the Carpathians slab that exerts a northward pull on the upper Dacia plate in the Serbian Carpathians. However, the variability in deformation styles is controlled by geometry of the Moesian indenter and the distance to Moesia, as the rotation and northward displacements increase gradually to the north and west.</p>


2020 ◽  
Author(s):  
Rudra Mohan Pradhan ◽  
Tapas Kumar Biswal

<p>Fractured rock aquifers are one of the most difficult aquifers to characterize due to complex geometry and fracture network. In Aravalli terranes of North Gujarat, communities depend on basement rock aquifers as the primary source of water supply. The hydrogeology of these aquifers is poorly understood and the drinking/irrigation wells are frequently placed in this area with little appreciation of the fracture systems. Increasing water demand puts stress to explore groundwater from less reliable sources of basement rocks and hence, makes it vital to identify potential hydrogeological zones. Lineament studies are commonly used for targeting groundwater bearing zones in hard rock terrane and very often ignore the other important structural settings viz. extension, transtension etc. For the present study, structural data pertaining faults and fractures have been mapped through fieldwork and Electrical resistivity imaging (ERT) technique. The key objective of the study is to correlate the structural features (extensional and transtensional settings) with geophysical profiles and to find out potential hydrogeological zones from where water can be explored economically. The study area comes under the Ambaji basin of Aravalli-Delhi fold belt which is a Proterozoic fold belt running 700-800 km in NE-SW direction and situated in NW India. The Aravalli-Delhi fold belt had undergone multiple phases of deformation. In this area, three major sets of fractures are present and are oriented largely in WNW-ESE, NE-SW, and NW-SE direction. The WNW-ESE fracture is dextral in nature which has interpreted from the displacement of fold limbs. Further, these are right lateral en-echelon normal faults where NE-SW extension has been taken place. There is another set of fracture i.e. NW-SE which is due to stretching of strike-slip fault. The ductile shear zones in the area are also parallel to the NW-SE fracture set. The shear zones are opened-up due to extension and formed potential aquifers. ERT has been carried out along and across the fractures to understand the subsurface fracture geometry. The ERT shows deep sited fractures and low resistivity values at the cross-section of WNW-ESE faults with the shear zone. This concludes a strong correlation between different structural settings with potential aquifers which could be used for pumping as well as artificial recharge sites for long term sustainability.</p><p><strong>Keywords-</strong> Aravalli terrane, Aquifer, Extension, Fracture, ERT</p>


2011 ◽  
Vol 1 (4) ◽  
pp. 286-304 ◽  
Author(s):  
A. Rastbood ◽  
B. Voosoghi

Extension and slip rate partitioning in NW Iran constrained by GPS measurementsConvergence of 22±2 mm yr-1 between the northward motion of the Arabian Plate relative to Eurasia at N8° ±5° E is accommodated by a combination of thrust and strike-slip faults in different parts of Iran. Dislocation modeling is used to examine the GPS data for this part of the Alpine-Himalayan mountain belt with more concentration in NW Iran. First, the vectors due to known Arabia-Eurasia rotation are reproduced by introducing structures that approximate the large-scale tectonics of the Middle East. Observed features of the smaller scale fault system are then progressively included in the model. Slip rate amplitudes and directions adjusted to fit available GPS data. Geological evidences show strike-slip and reverse-slip faulting in NW Iran, but GPS data show normal faults in this region too. By slip partitioning we propose four locations for normal faults based on extensions observed by GPS data. Slip rate values were estimated between 2 ~ 5 mm/yr for proposed normal faults. Our modeling results prove that the NW Iran is not only affected by Arabia-Eurasia collision but also contributes in the subduction motion of the South Caspian and Kura basins basement beneath the Apsheron-Balkhan sill and the Great Caucasus respectively.


1969 ◽  
Vol 23 ◽  
pp. 65-68 ◽  
Author(s):  
Pierpaolo Guarnieri

This paper describes structural data collected during field work in southern East Greenland, a region characterised by a complex tectonic history. Here, 3D photogeology based on aerial and oblique photographs using high-resolution photogrammetry of a 150 km2 area in Sødalen in southern East Greenland shows ESE–WNW-trending faults cross-cutting Paleocene rift structures and flexure-related normal faults. The kinematic analysis highlights oblique and left-lateral strike-slip movements along faults oriented 120°. Strike-slip and dip-slip kinematic indicators on the walls of the chilled contacts between alkaline E–W-oriented dykes and the volcanic host rocks suggest that the faults and dykes formed at the same time, or maybe the faults were re-activated at a later stage. Palaeostress analysis, performed by inversion of fault-slip data, shows the presence of three different tectonic events. Coupling the 3D photogeological tool with structural analysis at key localities is a fundamental way to understand better the tectonic history of such a large area.


2012 ◽  
Vol 150 (2) ◽  
pp. 193-224 ◽  
Author(s):  
S. KOKKALAS ◽  
A. AYDIN

AbstractA distinct spatial relationship between surface faulting, magmatic intrusions and volcanic activity exists in the Aegean continental crust. In this paper, we provide detailed structural observations from key onshore areas, as well as compilations of lineament maps and earthquake locations with focal plane solutions from offshore areas to support such a relationship. Although pluton emplacement was associated with low-angle extensional detachments, the NNE- to NE-trending strike-slip faults also played an important role in localizing the Middle Miocene plutonism, providing ready pathways to deeper magma batches, and controlling the late-stage emplacement and deformation of granites in the upper crust. Additionally, the linear arrangements of volcanic centres, from the Quaternary volcanoes along the active South Aegean Volcanic Arc, are controlled primarily by NE-trending faults and secondarily by NW-trending faults. These volcanic features are located at several extensional settings, which are associated with the main NE-trending faults, such as (i) in the extensional steps or relay zones between strike-slip and oblique-normal fault segments, (ii) at the overlap zones between oblique-normal faults associated with an extensional strike-slip duplex and (iii) at the tip zone of a NE-trending divergent dextral strike-slip zone. The NE trend of volcano-tectonic features, such as volcanic cone alignments, concentration of eruptive centres, hydrothermal activity and fractures, indicates the significant role of tectonics in controlling fluid and magma pathways in the Aegean upper crust. Furthermore, microseismicity and focal mechanisms of earthquakes in the area confirm the activity and present kinematics of these NE- trending faults.


2021 ◽  
pp. 1-16
Author(s):  
Fernando Calamita ◽  
Paolo Pace ◽  
Vittorio Scisciani ◽  
Fabiana Properzi ◽  
Mirko Francioni

Abstract Several orogenic belts exhibit regional-scale anticlines characterized by prominent faults in their crestal/forelimb zone. These faults are also a common feature in the Neogene fold-and-thrust belt of the Apennines, where they have been contrastingly interpreted as younger-on-older thrust faults, large-scale strike-slip faults, and pre- or syn-thrusting normal faults. In this study, we analysed a NW–SE-trending fault (Montagna dei Fiori Fault) that affects the hinge-zone/forelimb of the Montagna dei Fiori Anticline. This fold is the outermost exposed contractional structure within the Pliocene–Quaternary antiformal stack of the outer Central Apennines. The integration of stratigraphic and structural data collected during a field geological survey enabled us to reconstruct a multiphase reactivation and deformation along the Montagna dei Fiori Fault. From the novel field data, a different interpretation for the evolution of the Montagna dei Fiori Fault is proposed. The fault originated as a Late Cretaceous – middle Miocene, NE-dipping, Dinaric up-thrust and was later reactivated, displaced and rotated during Pliocene Apennine thrusting and related folding, until assuming a present-day SW-dipping attitude with an apparent normal fault character. This newly proposed Dinaric origin of the Montagna dei Fiori structure is compared with an analogous subsurface example of a Palaeogene–Quaternary structure imaged by seismic reflection profile in the Adriatic foreland. The outcome of this combined field and subsurface investigation provides new elements to unravel the complex evolution of the Apennine thrust belt that developed at the expense of a previously deformed foreland, ahead of the advancing Dinaric chain.


1990 ◽  
Vol 27 (4) ◽  
pp. 570-581 ◽  
Author(s):  
Howard R. Williams

Development of tectonic subprovinces as shear-bounded granite–greenstone and sediment-dominated terranes during the late Archaean is reviewed and interpreted from relationships between portions of the Wabigoon, Wawa, and Quetico subprovinces.Greenstone-dominated subprovinces (Wabigoon and Wawa) are complex successions of tholeiites, 2.76–2.70 Ga calc-alkaline volcanic centres, and derived sediments. Supracrustal rocks aggregated on a scale of tens of kilometres, forming homoclines, locally upright folded, intruded by granitoids, exhibiting variable fabric trends and strains, and cut by transcurrent shear zones. Small-scale (10–100 km) accretion juxtaposed these varied supracrustal sequences, which were engulfed granitoid magmas, to form greenstone belts.Sediment-dominated subprovinces (Quetico) are metamorphosed wacke sequences deposited during and after the volcanic climax in the period 2.70–2.69 Ga. Overthrust imbrication at both the Wabigoon–Quetico and the Quetico–Wawa contacts occurred along north-dipping shears, now vertical. Continued right-lateral convergence at subprovince margins induced progressive shortening within the Quetico Subprovince, producing a regional planar fabric. Abukuma–style metamorphism, migmatite formation, and S-type granite intrusions occurred during the period 2.67–2.65 Ga.Greenstone-belt developments, terminated during large-scale (100–1000 km) late neo-Archæan accretion, are preserved within elongate, batholith-dominated terranes separated by metasedimentary migmatite belts. Geochronological, lithotectonic, and metamorphic patterns on a scale of hundreds of kilometres are permissive of an accretionary model of greenstone terrane coalescence in which formation of long-lived, complex volcanic arcs and a complementary fore-arc accretionary prism culminated in large-scale accretion and the formation of stable continental crust.


2016 ◽  
Vol 144 (10) ◽  
pp. 3651-3676 ◽  
Author(s):  
Erik R. Nielsen ◽  
Russ S. Schumacher

This research uses convection-allowing ensemble forecasts to address aspects of the predictability of an extreme rainfall event that occurred in south-central Texas on 25 May 2013, which was poorly predicted by operational and experimental numerical models and caused a flash flood in San Antonio that resulted in three fatalities. Most members of the ensemble had large errors in the location and magnitude of the heavy rainfall, but one member approximately reproduced the observed rainfall distribution. On a regional scale a flow-dependent diurnal cycle in ensemble spread growth is observed with large growth associated with afternoon convection, but the growth rate then reduced after convection dissipates the next morning rather than continuing to grow. Experiments that vary the magnitude of the perturbations to the initial and lateral boundary conditions reveal flow dependencies on the scales responsible for the ensemble growth and the degree to which practical (i.e., deficiencies in observing systems and numerical models) and intrinsic predictability limits (i.e., moist convective dynamic error growth) affect a particular convective event. Specifically, it was found that large-scale atmospheric forcing tends to dominate the ensemble spread evolution, but small-scale error growth can be of near-equal importance in certain convective scenarios where interaction across scales is prevalent and essential to the local precipitation processes. In a similar manner, aspects of the “upscale error growth” and “downscale error cascade” conceptual models are seen in the experiments, but neither completely explains the spread characteristics seen in the simulations.


Sign in / Sign up

Export Citation Format

Share Document