Molecular organic geochemistry of a proposed stratotype for the Oxfordian/Kimmeridgian boundary (Isle of Skye, Scotland)

2012 ◽  
Vol 149 (5) ◽  
pp. 857-874 ◽  
Author(s):  
APOLLINE LEFORT ◽  
YANN HAUTEVELLE ◽  
BERNARD LATHUILIÈRE ◽  
VINCENT HUAULT

AbstractThe composition of the soluble organic matter of the Oxfordian–Kimmeridgian Flodigarry Shale Member (Isle of Skye, Scotland) is presented for the first time. A continuous succession of silty clays and nodular limestone beds is exposed on a rocky shore to the north of Staffin Bay. This succession is proposed as a potential stratotype of the boundary between the Oxfordian and Kimmeridgian stages. This paper points out the exceptional preservation and very low thermal degradation of the organic matter. Indeed, the molecular composition is characterized by the abundance of unsaturated biomarkers (hopenes and diasterenes) as well as undamaged bioterpenoids (ferruginol and sugiol). The abundance of long-chainn-alkanes characterized by an odd-over-even predominance reveals a dominant continental contribution. This is also attested to by the relatively high amounts of plant biomarkers (e.g. ferruginol, sugiol, cadalene and retene), which suggest a palaeovegetation largely composed of pinophytes, especially Cupressaceae, Taxodiaceae and Cheirolepidiaceae, on the nearest emerged lands. The water column of the depositional environment was oxic in its upper part and rather dysoxic in its lower part. The composition of the organic matter does not significantly change along the Flodigarry Shale Member. In other words, no evolutionary events or drastic change in palaeoenvironments can be deduced from the molecular content of these sedimentary rocks, and it does not allow us to support a precise location for the Oxfordian/Kimmeridgian boundary in the succession.

1992 ◽  
Vol 6 ◽  
pp. 147-147
Author(s):  
Stephen R. Jacobson ◽  
Rosemary A. Askin

Both insoluble (particulate) and soluble (molecular) sedimentary organic matter carry signatures of physical, chemical, and biological processes. These signatures may reflect (a) primary age-diagnostic, organism-specific, and environmentally-sensitive processes; (b) secondary factors related to mode of transportation, deposition, and preservation; and (c) tertiary agents that indicate post-burial alteration of the organic matter. Application of any or all organic matter data recorded in rocks can be used to solve geologic problems.Organic stratigraphy may be applied to hydrocarbon exploration. Our example uses both particulate and molecular data to reconstruct the age relations of Cretaceous-Lower Tertiary sediments in Wyoming, to determine the age of thrust fault motion, and to demonstrate constraints on the timing of upward petroleum migration to available trapped reservoirs.Another perspective helps establish chronostratigraphic frameworks for correlations of global sea-level change. Our example from Antarctic sediments that span the Cretaceous-Tertiary boundary reflects perturbations in relative sea-level and the consequential changes in the distribution of organic particulates from marine and terrestrial regimes. These data can be compared to age-equivalent data from other parts of the world, and test global sea-level change.Both of these applications demonstrate the versatility of organic matter in solving geologic problems. Data from contemporaneous land plants, freshwater and marine organic-walled micro-organisms provide clues on their lifestyle and subsequent afterlife alteration. Organic stratigraphy represents a long anticipated integration of several paleontological disciplines. It combines aspects of palynology, organic geochemistry, paleobotany, and coal petrography into a coherent science, with an enhanced capability to provide significant applications in the future.


2016 ◽  
Vol 155 (4) ◽  
pp. 773-796 ◽  
Author(s):  
ASSAD GHAZWANI ◽  
RALF LITTKE ◽  
VICTORIA SACHSE ◽  
REINHARD FINK ◽  
NICOLAJ MAHLSTEDT ◽  
...  

AbstractDuring Middle Devonian time a thick succession of organic-rich, mainly lacustrine flagstones developed within the Orcadian Basin. These petroleum source rocks crop out in northern Scotland. Nineteen samples were studied using organic petrology, palynology and organic geochemistry in order to characterize kerogen type, depositional environment, thermal maturity and petroleum generation potential. Corg, carbonate and sulphur content as well as hydrogen index (HI) values are quite variable (e.g. HI from 79 to 744 mg HC/g Corg). Based on biomarker data, organic material mainly originates from aquatic organic matter deposited under lacustrine conditions with oxygen-depleted, but not permanently anoxic, bottom waters. Petrography reveals small quantities of vitrinite particles, indicating minor input of terrestrial material. This is supported by biomarker data and the palynofacies, which is characterized by a high amount of oil-prone amorphous organic matter (AOM) and generally few miospores. Maturity of the succession studied in Caithness and Orkney is between immature and oil mature. One-dimensional basin modelling shows that a significant remaining hydrocarbon generation potential exists within the Middle Devonian succession. In contrast to the low hydrocarbon generation in the onshore area, offshore oil generation was significant, especially after deposition of thick Upper Jurassic – Upper Cretaceous sediments. At the end of Cretaceous time, hydrocarbon generation ceased due to uplift. The contribution to known oil fields from the Devonian flagstones is a realistic scenario, including a contribution to the Beatrice oil field in the south of the modelled area.


2015 ◽  
Vol 173 ◽  
pp. 162-172 ◽  
Author(s):  
Andrew S. Wozniak ◽  
Rachel U. Shelley ◽  
Stephanie D. McElhenie ◽  
William M. Landing ◽  
Patrick G. Hatcher

2020 ◽  
Vol 23 (3-4) ◽  
Author(s):  
STIJN EVERAERT ◽  
DIRK K. MUNSTERMAN ◽  
PIETER J. DE SCHUTTER ◽  
MARK BOSSELAERS ◽  
JEROEN VAN BOECKEL ◽  
...  

The stratigraphic position of the lower Miocene Kiel Sand Member of the Berchem Formation in the Antwerp area (northern Belgium) is not well constrained and its depositional environments are poorly known. Due to a spatial limited decalcification front, the Kiel Sand Member is completely decalcified in southern Antwerp and gradually becomes fossiliferous to the north-east of the city. The stratigraphy and palaeontology of the fossiliferous sediments in three temporary exposures are presented. The dinoflagellate cyst analysis of fossiliferous horizons shows the relative progress of a transgression in the southern North Sea Basin during the early–middle Burdigalian, that probably initiated in the late Aquitanian. The Kiel Sand Member contains an important mollusc fauna, with several species reported for the first time from this member. The taphonomy and fauna of the shell beds indicate a shallow marine, high energetic depositional environment, strongly influenced by storms, currents, waves and a rather low sedimentation rate. The climate was warm-temperate to subtropical. In all studied sections, the Kiel Sand Member could be clearly distinguished from the Antwerpen Sand Member: similarities and differences are discussed. Moving to the north of Antwerp, the erosive base of the Antwerpen Sand Member cuts deeper into the Kiel Sand Member. The Early Miocene Unconformity (EMU) is suggested at this contact.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Xiaojun Li ◽  
Jingchun Tian ◽  
Miao Wang ◽  
Yong Chen

Abstract The carbonate rocks were collected from the Qum Formation in outcrop of the northern Garmsar Area, Iran. In order to evaluating the hydrocarbon generation prospects of these source rocks, we analyzed their geochemical characteristics, including the abundance, type, and maturity of organic matter, and investigated their formation conditions by analyzing the characteristics of soluble organic matter and sedimentary environment. The results show that the organic matter abundance of the source rocks in the Qum Formation in the Garmsar Area is low in the north and west. The organic matter type is mainly II1-II2, locally showing type I and III, and in general, it is conducive to hydrocarbon generation. The maturity of organic matter is low, showing the Tmax between 416°C and 439°C, vitrinite reflectance (Ro) from 0.49% to 0.83%, which indicate it is at the stage of low to moderate maturity. The soluble organic matter characteristics indicated that the organic matter evolution of the source rocks in the Qum Formation is low. Through comparison between the study area and other areas, and different places within the working area, the abundance, type, and maturity of organic matter of the source rocks in the Qum Formation are different, caused by the basin facie zones, sedimentary environment, and history of sedimentation of the source rocks. Overall, the source rock in the Qum Formation in Garmsar Area has good prospects of hydrocarbon generation. This study has important significance for further exploration in the Garmsar Area.


2020 ◽  
Vol 33 ◽  
pp. 15
Author(s):  
Roi Martínez-Escauriaza ◽  
Claudio Vieira ◽  
Lídia Gouveia ◽  
Nuno Gouveia ◽  
Margarida Hermida

Data obtained from licenses of spearfishers and surveys conducted in 2004 and 2017 allowed for the analysis, for the first time, of the practice of spearfishing in the Madeira archipelago. Only a small percentage of the population practices spearfishing, mostly local young men. Most of them practice the activity with a partner throughout most of the year and along most of the island's coastal areas, although preferentially along the North and Southeast coast. Results show how, in recent years, despite the population of spearfishers decreasing, the abundance in the annual catch potentially increased, probably due to the higher investment of time in this activity. It has been observed that many fishers complement their catches with manual collecting of invertebrates. Overall, 40 teleost fishes and also 4 crustaceans and 8 molluscs were identified. The most frequently captured fish species were parrotfish and white seabream, while limpets were the most collected invertebrates in both selected periods.


Author(s):  
A., C. Prasetyo

Overpressure existence represents a geological hazard; therefore, an accurate pore pressure prediction is critical for well planning and drilling procedures, etc. Overpressure is a geological phenomenon usually generated by two mechanisms, loading (disequilibrium compaction) and unloading mechanisms (diagenesis and hydrocarbon generation) and they are all geological processes. This research was conducted based on analytical and descriptive methods integrated with well data including wireline log, laboratory test and well test data. This research was conducted based on quantitative estimate of pore pressures using the Eaton Method. The stages are determining shale intervals with GR logs, calculating vertical stress/overburden stress values, determining normal compaction trends, making cross plots of sonic logs against density logs, calculating geothermal gradients, analyzing hydrocarbon maturity, and calculating sedimentation rates with burial history. The research conducted an analysis method on the distribution of clay mineral composition to determine depositional environment and its relationship to overpressure. The wells include GAP-01, GAP-02, GAP-03, and GAP-04 which has an overpressure zone range at depth 8501-10988 ft. The pressure value within the 4 wells has a range between 4358-7451 Psi. Overpressure mechanism in the GAP field is caused by non-loading mechanism (clay mineral diagenesis and hydrocarbon maturation). Overpressure distribution is controlled by its stratigraphy. Therefore, it is possible overpressure is spread quite broadly, especially in the low morphology of the “GAP” Field. This relates to the delta depositional environment with thick shale. Based on clay minerals distribution, the northern part (GAP 02 & 03) has more clay mineral content compared to the south and this can be interpreted increasingly towards sea (low energy regime) and facies turned into pro-delta. Overpressure might be found shallower in the north than the south due to higher clay mineral content present to the north.


Sign in / Sign up

Export Citation Format

Share Document