Use of the quantity/potential relationship to provide a scale of the ability of extractants to remove soil potassium

1970 ◽  
Vol 74 (1) ◽  
pp. 119-121 ◽  
Author(s):  
T. M. Addiscott

SUMMARYQuantity/potential relationships, between gain and loss of K by the soil and K potential (RT In ακ/⊧αca+Mg) were determined on twenty-seven Rothamsted and Woburn soils. K extracted by neutral N ammonium acetate, by H-resin and 0·5 M sodium bicarbonate (pH 8·5) were also measured.The ability of an extractant to remove soil K is equated to a K potential (derived from the quantity/potential curve) which the soil attains on removing K equal to that taken out by extractant. Mean values for all soils were – 4995 ± 97 cal/equiv for the ammonium acetate, – 6081 ± 88 cal/equiv for the H-resin and – 4336 ±117 cal/equiv for the sodium bicarbonate extractants. For the first and last extractants the ability to remove K was less in rich than in poor soils.Varying the ammonium ion concentration from 0·1 N to 1 N in ammonium acetate/acetic acid mixtures, N in acetate ions, did not greatly affect their ability to remove K.

2018 ◽  
Vol 25 (1) ◽  
pp. 89-100 ◽  
Author(s):  
Aleksandra Ziemińska-Stolarska ◽  
Janusz Adamiec ◽  
Mirosław Imbierowicz ◽  
Ewa Imbierowicz ◽  
Marcin Jaskulski ◽  
...  

Abstract The paper presents methodology of accurate mobile measurements of water quality parameters such as temperature, dissolved oxygen, chlorophyll “a” concentration, ammonium ion concentration, conductivity, pH and blue-green algae content in water. The measurements (probe EXO 2, YSI, USA) were made on various depths of probe immersion (1.5, 2.5 and 3.5 m) and at different towing speeds of the probe (approx. 5.4 and 9.0 km/h). Static measurements carried out on the same route provided reference values for the measurements in motion to compare the repeatability of static and mobile methods. The tests were also evaluated by observation of probe behavior in motion, e.g. water disturbance intensity, access of light (sun rays) to the sensors. Statistical tests confirmed that the mean values of water quality parameters from mobile measurements with the speed of 5.4 km/h at the depth 1.5 m does not differ from the stationary measurements. Results of statistical analysis prove that water quality parameters can be measured accurately keeping established speed of towing the probe at the fixed depth. Methodology of mobile measurements elaborated in the frame of this work allows to collect vast number of data which can be used to obtain GIS point maps of water quality parameters in large water bodies.


1968 ◽  
Vol 40 (2) ◽  
pp. 54-59
Author(s):  
Osmo Mäkitie

The extractant, 0.5 M acetic acid –0.5 M ammonium acetate at pH 4.65, which is used in soil-testing, extracts relatively high amounts of aluminium from acid soils. The mean values of acetate-extractable aluminium at pH 4.65, 1.75 meq Al/100 g of soil, and of exchangeable aluminium (M KCI extraction), 0.41 meq Al were obtained from a material of 30 samples of acid soils (Table 2). Several other acetic acid ammonium acetate extractants, from M acetic acid to M ammonium acetate solution were also used for studying the extractability of soil aluminium. The soil-testing extractant can be used for the estimation of the soluble amounts of aluminium in acid soils, however, further studies are needed for a better interpretation of the ammonium acetate extractable (at pH 4.65) aluminium in our soils.


2014 ◽  
Vol 38 (1) ◽  
pp. 177-184 ◽  
Author(s):  
Ronaldir Knoblauch ◽  
Paulo Roberto Ernani ◽  
Francisco Carlos Deschamps ◽  
Luciano Colpo Gatiboni ◽  
Timothy Wayne Walker ◽  
...  

Incorporation of rice straw into the soil just before flooding for water-seeded rice can immobilize mineral nitrogen (N) and lead to the production of acetic acid harmful to the rice seedlings, which negatively affects grain yield. This study aimed to evaluate the formation of organic acids and variation in pH and to quantify the mineral N concentration in the soil as a function of different times of incorporation of rice straw or of ashes from burning the straw before flooding. The experiment was carried out in a greenhouse using an Inceptisol (Typic Haplaquept) soil. The treatments were as follows: control (no straw or ash); incorporation of ashes from previous straw burning; rice straw incorporated to drained soil 60 days before flooding; straw incorporated 30 days before flooding; straw incorporated 15 days before flooding and straw incorporated on the day of flooding. Experimental units were plastic buckets with 6.0 kg of soil. The buckets remained flooded throughout the trial period without rice plants. Soil samples were collected every seven days, beginning one day before flooding until the 13th week of flooding for determination of mineral N- ammonium (NH4+) and nitrate (NO3-). Soil solution pH and concentration of organic acids (acetic, propionic and butyric) were determined. All NO3- there was before flooding was lost in approximately two weeks of flooding, in all treatments. There was sigmoidal behavior for NH4+ formation in all treatments, i.e., ammonium ion concentration began to rise shortly after soil flooding, slightly decreased and then went up again. On the 91st day of flooding, the NH4+ concentrations in soil was 56 mg kg-1 in the control treatment, 72 mg kg-1 for the 60-day treatment, 73 mg kg-1 for the 30-day treatment and 53 mg kg-1 for the ash incorporation treatment. These ammonium concentrations correspond to 84, 108, 110 and 80 kg ha-1 of N-NH4+, respectively. When the straw was incorporated on the day of flooding or 15 days before, the concentration of N-NH4+ in the soil was 28 and 54 mg kg-1, equivalent to an accumulation of 42 and 81 kg ha-1 of N-NH4+, respectively. There was formation of acetic acid in which toxic concentrations were reached (7.2 mmol L-1) on the 15th day of flooding only for the treatment with straw incorporated on the day of flooding. The pH of the soil solution of all the treatments increased after flooding and this increase was faster in the treatments with incorporation of straw, followed by the ash treatment and then the control. After 60 days of flooding, however, the pH values were around 6.5 for all treatments, except for the control, which reached a pH of 6.3. Rice straw should be incorporated into the soil at least 30 days before flooding; otherwise, it may immobilize part of the mineral N and produce acetic acid in concentrations toxic to rice seedlings.


Weed Science ◽  
1991 ◽  
Vol 39 (4) ◽  
pp. 622-628 ◽  
Author(s):  
John D. Nalewaja ◽  
Robert Matysiak

Glyphosate is often applied with diammonium sulfate to increase weed control. However, many other salts in the spray carrier have antagonized glyphosate phytotoxicity. Research was conducted with wheat as a bioassay species to further determine the influence of various salts on glyphosate phytotoxicity. Cation antagonism of glyphosate occurred with iron > zinc > calcium ≥ magnesium > sodium > potassium. Ammonium cation with hydroxide or most other anions was not antagonistic. Anions of ammonium compounds were of primary importance in overcoming glyphosate antagonistic salts, while the ammonium cation was neutral or slightly stimulatory with certain anions. Sulfate, phosphate, citrate, and acetate anions were not antagonistic, but nitrate and chloride anions were slightly antagonistic when applied as ammonium salts or acids. Antagonism of glyphosate action by sodium bicarbonate and calcium chloride was overcome by phosphoric, sulfuric, and citric acid and phosphate, sulfate, and citrate ammonium salts. Acid and ammonium salts of nitrate and chloride were more effective in overcoming sodium bicarbonate than calcium chloride antagonists of glyphosate. Ferric sulfate antagonism was overcome only by citric, partly by phosphoric and sulfuric but not by nitric and hydrochloric acids or their ammonium salts. Acetic acid, ammonium acetate, and ammonium hydroxide did not overcome any salt antagonism of glyphosate. Glyphosate response to salts was independent of spray carrier pH.


1971 ◽  
Vol 77 (1) ◽  
pp. 117-121 ◽  
Author(s):  
A. P. Draycott ◽  
M. J. Durrant ◽  
D. A. Boyd

SummaryResults of two groups of experiments testing phosphate fertilizer for sugar beet were re-examined; there were 53 experiments made between 1957 and 1960 in group 1 and 25 experiments between 1957 and 1959 in group 2. The mean response of total sugar to 126 kg/ha P2O5 was only 160 kg/ha but on a few fields response exceeded 1000 kg/ha. Response seemed to be greater in 1958 than in the other years, but between-site variance accounted for most of the difference from year to year.Stored soil samples were analysed for phosphorus by four methods; the results were compared and related to the yield response to phosphate fertilizer. After allowing for experimental error, the percentages of the between-sites variance of the responses accounted for by log (soil P) were (group 1 first): sodium bicarbonate, 60 and 62%; anion resin, 52 and 30%; ammonium acetate/acetic acid, 52 and 0%; and calcium chloride, 42 and 2%. When soil pH was included in the regression equation, prediction of response by anion resin much improved and equalled that of sodium bicarbonate. Ammonium acetate/acetic acid was ineffective on soils with much free calcium carbonate.As two-thirds of the soils had sodium bicarbonate-soluble phosphorus concentrations between 15 and 45 ppm P with mean response 65 kg/ha sugar, there is only limited scope for increasing the profitability of the crop by improving P manuring. However, more P fertilizer can be recommended for the few soils with ≤ 10 ppm P and P fertilizer can be withheld from fields with more than 45 ppm. The dressings we recommend are 180, 120, 60, 30 and 0 kg/ha P2O5 (approximately 1·5, 1·0, 0·5, 0·25 and 0 cwt/acr P2O5) on soils with ≤ 10, 11·15, 16·25, 26·45 and ≥45 ppm sodium bicarbonatesoluble P respectively.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1865
Author(s):  
Yordan Martínez ◽  
Cristopher Isaac Almendares ◽  
Cristhian José Hernández ◽  
Mavir Carolina Avellaneda ◽  
Ana Melissa Urquía ◽  
...  

To evaluate the effect of acetic acid and sodium bicarbonate supplemented to drinking water on water quality, growth performance, relative organ weights, cecal traits and hematological parameters of broilers, a total of 456 one-day-old Cobb MV × Cobb 500 FF mixed broilers were randomly placed in three experimental treatments, with four replicates per treatment and 38 birds per replicate, for 10 days. The treatments consisted of the use of acetic acid (0.4%; T1) as acidifier, an apparently neutral pH (T2) and sodium bicarbonate (1%; T3) as alkalizer of the drinking water. T3 showed the highest values (p < 0.05) for total dissolved solids, electrical conductivity, salinity and pH. T1 and T2 showed the same productive response (p > 0.05); however, T3 decreased (p < 0.05) body weight, feed intake and the relative weight of the pancreas and immune organs and increased (p < 0.05) water intake, mortality and relative weight of the heart and liver. Likewise, T3 increased (p < 0.05) the cecal pH, although without changes for the cecal lactic cecal bacteria count and blood parameters (p > 0.05). The acid pH of the drinking water had no effect on the biological response of broilers compared to T2; however, the T3 provoked high mortality, ascites, low productivity and abnormal growth of some organs.


Author(s):  
Mesfin Kassa ◽  
Wassie Haile ◽  
fassile kebede

Quantity-intensity characteristics are among conventional approaches for studying potassium dynamics and its availability; this was assessed to determine availability in four districts: namely, Sodo Zuria, Damot Gale, Damot Sore, and Boloso Sore at three different land use type viz., enset-coffee, crop land, and grazing land. There was water soluble, ammonium acetate, nitric acid extractable potassium, exchangeable potassium, and non-exchangeable potassium studied in soil samples, which were collected from 0-20 cm depth of each land type. The study revealed that water soluble and ammonium acetate extractable potassium concentrations ranged from 0.04 to 0.42 cmolKg-1 soils enset-coffee and grazing land use types, respectively. The study showed that exchangeable potassium constituted the highest proportion of available potassium, while the proportion of water soluble potassium was found to be the lowest. In this study, non-exchangeable potassium concentrations varied from 0.10 to 0.04cmolKg-1soils for enset-coffee, and crop and grazing land use type. Furthermore, available potassium and exchangeable potassium concentrations were positively correlated with OC(r=0.95***), cation exchange capacity, and sand and clay(r=0.98***). In addition, the K dynamics as impacted by land use types found that the highest change in exchangeable potassium (0.31cmolkg-1soils) and potential buffering capacity (1.79cmolkg-1soils) were noted in crop land use types, whereas the lowest change(1.26cmolkg-1 soils) was observed in the enset-coffee system, The varying properties, potassium status, dynamic and land use type of soils identified in the study areas provided adequate information to design soil potassium management options and further research about the soil in each site. Therefore, application of site specific soil fertility management practices and research can improve soil potassium status and quantity intensity parameters to sustain crop productive soils.


2016 ◽  
Vol 41 (4) ◽  
pp. 354-361 ◽  
Author(s):  
Matthew F. Higgins ◽  
Susie Wilson ◽  
Cameron Hill ◽  
Mike J. Price ◽  
Mike Duncan ◽  
...  

This study evaluated the effects of ingesting sodium bicarbonate (NaHCO3) or caffeine individually or in combination on high-intensity cycling capacity. In a counterbalanced, crossover design, 13 healthy, noncycling trained males (age: 21 ± 3 years, height: 178 ± 6 cm, body mass: 76 ± 12 kg, peak power output (Wpeak): 230 ± 34 W, peak oxygen uptake: 46 ± 8 mL·kg−1·min−1) performed a graded incremental exercise test, 2 familiarisation trials, and 4 experimental trials. Trials consisted of cycling to volitional exhaustion at 100% Wpeak (TLIM) 60 min after ingesting a solution containing either (i) 0.3 g·kg−1 body mass sodium bicarbonate (BIC), (ii) 5 mg·kg−1 body mass caffeine plus 0.1 g·kg−1 body mass sodium chloride (CAF), (iii) 0.3 g·kg−1 body mass sodium bicarbonate plus 5 mg·kg−1 body mass caffeine (BIC-CAF), or (iv) 0.1 g·kg−1 body mass sodium chloride (PLA). Experimental solutions were administered double-blind. Pre-exercise, at the end of exercise, and 5-min postexercise blood pH, base excess, and bicarbonate ion concentration ([HCO3−]) were significantly elevated for BIC and BIC-CAF compared with CAF and PLA. TLIM (median; interquartile range) was significantly greater for CAF (399; 350–415 s; P = 0.039; r = 0.6) and BIC-CAF (367; 333–402 s; P = 0.028; r = 0.6) compared with BIC (313: 284–448 s) although not compared with PLA (358; 290–433 s; P = 0.249, r = 0.3 and P = 0.099 and r = 0.5, respectively). There were no differences between PLA and BIC (P = 0.196; r = 0.4) or between CAF and BIC-CAF (P = 0.753; r = 0.1). Relatively large inter- and intra-individual variation was observed when comparing treatments and therefore an individual approach to supplementation appears warranted.


1962 ◽  
Vol 42 (2) ◽  
pp. 266-272 ◽  
Author(s):  
T. E. Barber ◽  
B. C. Matthews

The non-exchangeable potassium released by soil after equilibration with cation-exchange resin was determined by extraction of the mixture with neutral ammonium acetate at room temperature and compared with a similar extraction in the absence of resin. The difference obtained following a 2-day equilibration period was called moderately-available potassium.Simple linear regression of yield on exchangeable potassium or exchangeable plus moderately-available potassium accounted for only 16 and 27 per cent respectively of the variability in yield response of corn, wheat, oats and potatoes to potassium fertilizer in the field. Multiple linear regression of yield on exchangeable and moderately-available potassium accounted for an average of 37 per cent of the variation in crop response; but a multiple quadratic regression of Log (100-per cent yield) on exchangeable and moderately-available potassium accounted for an average of 56 per cent of the variability in Log (100-per cent yield). Multiple quadratic regression of absolute yield or per cent yield on exchangeable and moderately-available potassium accounted for 46 and 50 per cent, respectively, of the variability in crop response to potassium fertilizer.


Sign in / Sign up

Export Citation Format

Share Document