Activity and energy expenditure in laying hens

1976 ◽  
Vol 86 (3) ◽  
pp. 471-473 ◽  
Author(s):  
M. Van Kampen

SummaryThe energy cost of nesting activity and oviposition of hens in different environments has been determined.The oxygen consumption of hens on a wire floor reached a peak during the last 15 min before oviposition. However, the oxygen uptake of hens accustomed to a litter floor had fallen to a minimum at this time.The energy cost of expelling the egg is minimal. There is a good correlation between the locomotor activity and the heat production.The variations in heat production and body temperature on different types of floors are explicable by the differences in nesting activity.

1976 ◽  
Vol 87 (1) ◽  
pp. 85-88 ◽  
Author(s):  
M. Van Kampen

SummaryThe influence of standing, spontaneous activity and eating on heat production was determined.The extra heat production of standing is negatively correlated with the length of standing period. In a short standing period of 30 min the associated activity, pecking against the respirometer wall and fluffing the feathers, was high and the heat production was increased by 25% compared with that during sitting. After standing for 1½ h spontaneous activity was very low and the difference in heat production between the standing and sitting bird was reduced by 9%.During eating the heat production increased by an average of 37% (range 11–68%); this was due mainly to the act of eating per se and not to the work of digestion.The mean energy cost of eating was calculated to be 143 J/kg0·75/min spent eating.


1999 ◽  
Vol 11 (3) ◽  
pp. 229-239 ◽  
Author(s):  
Lobo Louie ◽  
Roger G. Eston ◽  
Ann. V. Rowlands ◽  
Kwok Keung Tong ◽  
David K. Ingledew ◽  
...  

This study compared the accuracy of heart rate monitoring, pedometry, and uniaxial and triaxial aecelerometry for estimating oxygen consumption during a range of activities in Hong Kong Chinese boys. Twenty-one boys, aged 8–10 years, walked and ran on a treadmill, played catch, played hopscotch, and sat and crayoned. Heart rate, uniaxial and triaxial accelerometry counts, pedometry counts, and scaled oxygen uptake (SVO2) were measured. All measures correlated significantly with VO2 scaled to body mass−0.75 (SVO2). The best predictor of SVO2 was triaxial accelerometry (R2 = 0.89). Correlations in this study were comparable with those in a previous study that used identical methods on 30 UK boys and girls. These results provide further confirmation that triaxial accelerometry provides the best assessment of energy expenditure and that pedometry offers potential for large population studies.


1982 ◽  
Vol 202 (3) ◽  
pp. 661-665 ◽  
Author(s):  
D G Clark ◽  
M Brinkman ◽  
O H Filsell ◽  
S J Lewis ◽  
M N Berry

(Na+ + K+)-dependent ATPase activity, heat production and oxygen consumption were increased by 59%, 62% and 75% respectively in hepatocytes from tri-iodothyronine-treated rats. Ouabain at concentrations of 1 and 10 mM decreased oxygen uptake by 2-8% in hepatocytes from euthyroid rats and by 5-15% in hepatocytes from hyperthyroid animals. Heat output was decreased by 4-9% with the glycoside in isolated liver parenchymal cells from the control animals and by 11% in the cells from the tri-iodothyronine-treated animals. These results do not support the hypothesis that hepatic (Na+ + K+)-ATPase plays a major role in increased heat production in hepatocytes from hyperthyroid rats.


2010 ◽  
Vol 298 (5) ◽  
pp. R1409-R1416 ◽  
Author(s):  
Amy Warner ◽  
Preeti H. Jethwa ◽  
Catherine A. Wyse ◽  
Helen I'Anson ◽  
John M. Brameld ◽  
...  

The objective of this study was to determine whether the previously observed effects of photoperiod on body weight in Siberian hamsters were due to changes in the daily patterns of locomotor activity, energy expenditure, and/or feeding behavior. Adult males were monitored through a seasonal cycle using an automated comprehensive laboratory animal monitoring system (CLAMS). Exposure to a short-day photoperiod (SD; 8:16-h light-dark cycle) induced a significant decline in body weight, and oxygen consumption (V̇o2), carbon dioxide production (V̇co2), and heat production all decreased reaching a nadir by 16 wk of SD. Clear daily rhythms in locomotor activity, V̇o2, and V̇co2 were observed at the start of the study, but these all progressively diminished after prolonged exposure to SD. Rhythms in feeding behavior were also detected initially, reflecting an increase in meal frequency but not duration during the dark phase. This rhythm was lost by 8 wk of SD exposure such that food intake was relatively constant across dark and light phases. After 18 wk in SD, hamsters were transferred to a long-day photoperiod (LD; 16:8-h light-dark cycle), which induced significant weight gain. This was associated with an increase in energy intake within 2 wk, while V̇o2, V̇co2, and heat production all increased back to basal levels. Rhythmicity was reestablished within 4 wk of reexposure to long days. These results demonstrate that photoperiod impacts on body weight via complex changes in locomotor activity, energy expenditure, and feeding behavior, with a striking loss of daily rhythms during SD exposure.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5600 ◽  
Author(s):  
Rebecca Naomi Cliffe ◽  
David Michael Scantlebury ◽  
Sarah Jane Kennedy ◽  
Judy Avey-Arroyo ◽  
Daniel Mindich ◽  
...  

Poikilotherms and homeotherms have different, well-defined metabolic responses to ambient temperature (Ta), but both groups have high power costs at high temperatures. Sloths (Bradypus) are critically limited by rates of energy acquisition and it has previously been suggested that their unusual departure from homeothermy mitigates the associated costs. No studies, however, have examined how sloth body temperature and metabolic rate vary with Ta. Here we measured the oxygen consumption (VO2) of eight brown-throated sloths (B. variegatus) at variable Ta’s and found that VO2 indeed varied in an unusual manner with what appeared to be a reversal of the standard homeotherm pattern. Sloth VO2 increased with Ta, peaking in a metabolic plateau (nominal ‘thermally-active zone’ (TAZ)) before decreasing again at higher Ta values. We suggest that this pattern enables sloths to minimise energy expenditure over a wide range of conditions, which is likely to be crucial for survival in an animal that operates under severe energetic constraints. To our knowledge, this is the first evidence of a mammal provisionally invoking metabolic depression in response to increasing Ta’s, without entering into a state of torpor, aestivation or hibernation.


Author(s):  
Stefano Brunelli ◽  
Andrea Sancesario ◽  
Marco Iosa ◽  
Anna Sofia Delussu ◽  
Noemi Gentileschi ◽  
...  

BACKGROUND: Physiological Cost Index (PCI) is a simple method used to estimate energy expenditure during walking. It is based on a ratio between heart rate and self-selected walking speed. Previous studies reported that PCI is reliable in individuals with lower limb amputation but only if there is an important walking impairment. No previous studies have investigated the correlation of PCI with the Energy Cost Walking (ECW) in active individuals with traumatic unilateral trans-tibial amputation, considering that this particular category of amputees has an ECW quite similar to healthy individual without lower limb amputation. Moreover, it is important to determine if PCI is also correlated to ECW in the treadmill test so as to have an alternative to over-ground test. OBJECTIVES: The aim of this study was to evaluate the correlation between PCI and ECW in active individuals with traumatic trans-tibial amputation in different walking conditions. The secondary aim was to evaluate if this correlation permits to determine ECW from PCI values. METHODOLOGY: Ninety traumatic amputees were enrolled. Metabolic data, heart rate and walking speed for the calculation of ECW and for PCI were computed over-ground and on a treadmill with 0% and 12% slopes during a 6-minute walking test. FINDINGS: There is a significant correlation between ECW and PCI walking over-ground (p=0.003; R2=0.10) and on treadmill with 12% slopes (p=0.001; R2=0.11) but there is only a poor to moderate correlation around the trendline. No significant correlation was found walking on treadmill with 0% slope. The Bland-Altman plot analysis suggests that is not possible to evaluate ECW directly from PCI. CONCLUSIONS: PCI is a reliable alternative measure of energy expenditure during walking in active individuals with trans-tibial amputation when performing over-ground or at high intensity effort on treadmill. PCI is therefore useful only for monitoring a within subject assessment. LAYMAN’S ABSTRACT The knowledge of the energy cost of walking in disabled people is important to improve strategies of rehabilitation or fitness training and to develop new prosthetic and orthotic components. The “gold standard” for the evaluation of the energy cost of walking is the oxygen consumption measurement with a metabolimeter, but the testing procedure is expensive and time consuming, hardly practicable in many rehabilitation centers. The Physiological Cost Index (PCI) is an indirect tool that evaluates the oxygen consumption during walking. PCI considers heart rate during walking, in relation to the speed, as an indicator of energy expenditure. The formula is “walking heart rate – resting heart rate /speed”. PCI is widely used in literature but there is not a solid evidence of a direct correlation between PCI and energy cost of walking. In particular, for individuals with unilateral trans-tibial amputation without comorbidities, no previous studies have been conducted about this correlation. It has to be noticed that individuals with unilateral trans-tibial amputation have an energy cost of walking quite similar to healthy people. Previous studies reported that in healthy people such correlation does not exist. For this reason, the aim of this study was to evaluate if and in which walking condition a linear correlation exists between PCI and Energy Cost Walking in individuals with unilateral trans-tibial amputation. Oxygen consumption measurement with a metabolimeter and PCI were computed over-ground and on a treadmill with 0% and 12% slopes during a 6-minute walking test in 90 participants. We have found that PCI is an alternative measure of energy cost of walking when performing over-ground or with high intensity effort on treadmill (12% slope). These findings could be useful when PCI is used for monitoring a fitness training or for evaluation tests. Article PDF Link: https://jps.library.utoronto.ca/index.php/cpoj/article/view/32953/25717 How to Cite: Brunelli S, Sancesario A, Iosa M, Delussu A.S, Gentileschi N, Bonanni C, Foti C, Traballesi M. Which is the best way to perform the Physiological Cost Index in active individuals with unilateral trans-tibial amputation? Canadian Prosthetics & Orthotics Journal. Volume2, Issue1, No.5, 2019. https://doi.org/10.33137/cpoj.v2i1.32953. CORRESPONDING AUTHOR: Dr. Stefano Brunelli,Fondazione Santa Lucia, IRCCS, Via Ardeatina 306, 00179 Rome, Italy.ORCID: https://orcid.org/0000-0002-5986-1564Tel. +39 0651501844; Fax +39 0651501919E-MAIL: [email protected]


1997 ◽  
Vol 77 (3) ◽  
pp. 417-426 ◽  
Author(s):  
M. Lachia ◽  
J. F. Aguilera ◽  
Late C. Prieto

The energy cost of eating was measured in four goats averaging 38 kg and fitted with rumen cannulas. Heat production (HP) was estimated in each goat over restricted periods of approximately 15 min while standing and eating continuously in a confinement respiration chamber. The animals were given feeds of different nature and physical form ranging from shrubs to concentrates. The energy cost of eating was calculated from the increment in HP above the average HP during the prefeeding period. The energy cost was related to the type and amount of feed consumed and also to the time spent eating. In a parallel experiment, similar amounts of the feeds eaten normally (oral feeding) were introduced into the rumen through a fistula. The increases in HP during and after fistula-feeding were negligible, which indicates that all of the increase in HP during eating is to be attributed to the energy cost of eating per se, mainly to theact of food prehension, mastication and propulsion in the alimentary tract. The rate of ingestion (g DM/min) ranged from 6·3 for fresh cut lucerne (Medicago sativa) to 46-99 for concentrates. The energy cost of eating (J/kg body weight (BW) per g DM) averaged 7·08 for fresh cut lucerne, 9·02 for roughages and 1·55 for concentrates and was 2·24 and 4·75 for pelleted and chopped lucerne hay respectively. When theenergy cost was expressed as a function of time spent eating, it ranged from 45 to 144 J/kg BW per min, depending on the physical form of the feed.


1994 ◽  
Vol 267 (5) ◽  
pp. E648-E655 ◽  
Author(s):  
T. Brundin ◽  
J. Wahren

The renal contribution to the amino acid-induced whole body thermogenesis was examined. Using indirect calorimetry and catheter techniques, pulmonary and renal oxygen uptake and blood flow, blood temperatures, and net renal exchange of amino acids, glucose and lactate were measured in eight healthy men before and during 3 h of intravenous infusion of 720 kJ of an amino acid solution. During the infusion, the pulmonary oxygen uptake increased from 252 +/- 12 to 310 +/- 8 ml/min, cardiac output increased from 5.9 +/- 0.3 to 6.8 +/- 0.3 l/min, and the arterial blood temperature increased from 36.34 +/- 0.04 to 36.68 +/- 0.07 degrees C. Renal oxygen consumption, heat production, blood flow, and net glucose exchange remained unchanged during the infusion. The net renal uptake of amino acid energy from the blood rose from 2 +/- 2 to 11 +/- 4 W. The total renal energy expenditure was 9-10 W throughout the study period. It is concluded that intravenous amino acid infusion greatly augments the uptake and utilization of amino acids in the kidneys but does not stimulate the renal oxygen consumption, heat production, blood flow, or glucose release.


2016 ◽  
Vol 13 (s1) ◽  
pp. S44-S47 ◽  
Author(s):  
Kimberly A. Clevenger ◽  
Aubrey J. Aubrey ◽  
Rebecca W. Moore ◽  
Karissa L. Peyer ◽  
Darijan Suton ◽  
...  

Background:Limited data are available on energy cost of common children’s games using measured oxygen consumption.Methods:Children (10.6 ± 2.9 years; N = 37; 26 male, 9 female) performed a selection of structured (bowling, juggling, obstacle course, relays, active kickball) and unstructured (basketball, catch, tennis, clothespin tag, soccer) activities for 5 to 30 minutes. Resting metabolic rate (RMR) was calculated using Schofield’s age- and sex-specific equation. Children wore a portable metabolic unit, which measured expired gases to obtain oxygen consumption (VO2), youth METs (relative VO2/child’s calculated RMR), and activity energy expenditure (kcal/kg/min). Descriptive statistics were used to summarize data.Results:Relative VO2 ranged from 16.8 ± 4.6 ml/kg/min (bowling) to 32.2 ± 6.8 ml/kg/min (obstacle course). Obstacle course, relays, active kickball, soccer, and clothespin tag elicited vigorous intensity (>6 METs), the remainder elicited moderate intensity (3–6 METs).Conclusions:This article contributes energy expenditure data for the update and expansion of the youth compendium.


1961 ◽  
Vol 16 (1) ◽  
pp. 164-166 ◽  
Author(s):  
Sachchidananda Banerjee ◽  
Anita Barua ◽  
Arati Ghosh

Energy expenditures during different activities of 24 college girls were determined by measurement of oxygen consumption. The energy cost of various activities expressed as Calories per square meter of body surface per hour was as follows: basal metabolic rate (BMR), 28.75 α 0.47; lying at rest, 30.95 α 0.60; sitting at rest, 36.03 α 0.66; sitting at study, 34.59 α 0.63; sitting at household work, 80.71 α 3.50; standing at laboratory work, 48.71 α 2.70; walking, 110.27 α 2.70; ascending stairs, 137.83 α 4.60; and descending stairs, 90.39 α 3.25. The average total daily energy expenditure of the subjects, determined for a period of 7 days, was 1503 Cal. and the average daily intake was 1507 Cal. Energy expenditure during standardized work on the bicycle ergometer was determined in six college girls by measurement of oxygen consumption. The energy cost of work done equivalent to 150 kpm/min. was found lowest when the work was performed in the basal state, highest 1 hour after a heavy meal, and intermediate 4 hours after the meal. The results indicated that performance of work was more efficient on an empty stomach than when it was full. Submitted on September 19, 1960


Sign in / Sign up

Export Citation Format

Share Document