Comparison between reconstituted sheep faeces and rumen fluid inocula and between in vitro and in sacco digestibility methods as predictors of intake and in vivo digestibility

1996 ◽  
Vol 126 (2) ◽  
pp. 235-248 ◽  
Author(s):  
I. V. Nsahlai ◽  
N. N. Umunna

SUMMARYThis study (conducted in Debre Zeit, Ethiopia in 1993) examined (i) the effect of source of inoculum on in vitro dry matter (DM) digestibility (1VDMD) and gas production (GP) and (ii) the IVDMD, GP and in sacco degradability as predictors of in vivo DM digestibility (DMD) and intake. Six ruminally cannulated male sheep (used in the degradability studies and from which rumen fluid was harvested for the in vitro studies) and six intact sheep (from which faeces for reconstitution was obtained) were given teff straw ad libitum supplemented with 200 g/day of concentrate (1:1 mixture of noug (Guizotia abyssinica) cake and wheat middlings). In determining IVDMD on 26 feeds, pepsin-HC1 digestion was replaced with neutral detergent extraction. Microbial GP was measured on these feeds incubated with rumen fluid or reconstituted faeces inocula at various time periods. The degradability of each feed was determined by the nylon bag technique in three sheep. Eighty-eight intact male Ethiopian Menz type sheep (mean liveweight 256 (S.D. = 1·98) kg) were used in a randomized complete block experiment to determine intake and digestibility.Gas production using faeces inoculum (GP-F) was strongly related to GP using rumen fluid inoculum (GP-R) particularly at 48 h (R2 = 0·85; P <0·001) of incubation. The IVDMD obtained with reconstituted sheep faeces inoculum (IVDMD-F) had a strong positive relationship (R2 = 0·88; P <0·0001) with IVDMD measured using rumen fluid (IVDMD-R). The IVDMD values obtained by centrifugation were positively related to those obtained by filtration for the rumen fluid (R2 = 0·61) and reconstituted faeces (R2 = 0·47) inocula.The relationship between degradability and in vivo DMD was generally poor for roughages but improved with the length of incubation for forage legumes, being strongest at 24 h (R2 = 0·54). The in vivo DMD had the strongest relationship with GP-R at 24 h of incubation for roughages (R2 = 0·64) and legumes (R2 = 0·84). Dry matter degradability was poorly related to DM intake for roughages (R2 <0·10), while these were closely related for legumes particularly at 6 h of incubation (R2 = 0·55). The relationship between GP-R and intake was strongest at 12 h of incubation for roughages (R2 = 0·41) but was generally weak for legumes. The IVDMD accounted for a very low proportion of the variation in intake of roughages and legume forages. The gas production method was the best among the methods tested in predicting voluntary roughage intake, but not the intake of legumes. The nylon bag technique gave the best predictors (solubility, rate constant ‘c’ and Lag phase) of legume intake (R2 = 0·98).The discussion suggests explanations for why the nylon bag technique predicted performance from forage legumes better than from roughages, why the technique was much better as a predictor of intake than of in vivo DMD, and why the gas production technique predicted in vivo DMD and not the intake of legumes. Reconstituted faeces inoculum may replace rumen fluid inoculum in in vitro procedures. The IVDMD method is a less accurate predictor of in vivo DMD than GP and rumen degradability constants. Both feed factors and practices inherent in the methodologies may modify the predictiveness of indirect digestibility methods.

1999 ◽  
Vol 1999 ◽  
pp. 151-151 ◽  
Author(s):  
I.C.S. Bueno ◽  
A.L. Abdalla ◽  
S.L.S. Cabral Filho ◽  
D.M.S.S. Vitti ◽  
E. Owen ◽  
...  

The use of small ruminants, such as sheep, in metabolism studies is more convenient as handling problems are reduced and their maintenance costs are lower, in comparison with cattle. However in vivo digestibility estimates obtained at maintenance are known to differ between these two species. With the increased use ofin vitrogas production techniques, to evaluate ruminant feedingstuffs, it is of great importance to identify whether the species from which the rumen fluid inoculum is obtained has a significant influence on the results obtained.Rumen fluid samples were obtained from a non-lactating Holstein cow (C) and six wether sheep (S) offered the same diet (80 % tropical grass and 20 % dairy concentrate) and prepared so as to have similar dry matter (DM) contents and therefore potentially the microbial mass. Nine substrates (two tropical grasses 1-2, tropical alfalfa 3, barley straw 4, and five temperate grasses 5-9) were examined.


1993 ◽  
Vol 57 (2) ◽  
pp. 247-251 ◽  
Author(s):  
A. Kibont ◽  
E. R. Ørskov

AbstractTwenty-five male goats weighing 16 (s.e. 1-5) kg and aged 15 months were used to measure the dry matter (DM) intake of five browse species namely Acacia albida, Tamarindus indica, Etanda africana, Anogeissus leiocarpus and Sterculia setigera in a growth trial lasting 16 weeks. This was followed by a digestion trial with five goats in a 5 × 5 Latin square with 10 days adaptation and a 5-day measurement period. The degradation characteristics of the browse were measured by incubating samples in nylon bags for 6, 24, 48 and 96 h in the rumens of three sheep fitted with rumen cannulae and given hay plus grass nuts. The exponential model P = a +b(l — ect) was fitted to the data. Rumen fluid from the sheep was also used as an inoculum to incubate the samples in vitro for 3, 6,12, 24, 48, 72 and 96 h. Nylon bag degradability results were compared with in vivo results and in vitro gas production. The mean DM intakes, apparent digestible DM intakes and growth rates were 0·60, 0·62, 0·55, 0·53 and 0·65 kg/day, 0·43, 0·43, 0·35, 0·34 and 0·49 kg/day and 55, 60, 49, 42 and 62 glday for A. albida, T. indica, E. africana, A. leiocarpus and S. setigera respectively. Using the degradation characteristics A, B and c in a multiple regression analysis, the correlation coefficients with DM intake, apparent DM digestibility, apparent digestible DM intake and growth rate were 0·99, 0·88, 0·92 and 0·99 respectively. The inclusion of a lag phase (L) instead of A in the regression analysis improved the prediction of apparent DM digestibility and apparent digestible DM intake. The correlation coefficients between DM loss in nylon bags and in vitro gas production at 6, 24 and 48 h incubation were 0·84, 0·83 and 0·90 respectively. The results indicate that it may be possible to predict DM and apparent digestible DM intakes of browse by goats from the rumen degradation characteristics.


2015 ◽  
Vol 93 (3) ◽  
pp. 187-195 ◽  
Author(s):  
L.L. VanSomeren ◽  
P.S. Barboza ◽  
D.P. Thompson ◽  
D.D. Gustine

Ruminant populations are often limited by how well individuals are able to acquire nutrients for growth, maintenance, and reproduction. Nutrient supply to the animal is dictated by the concentration of nutrients in feeds and the efficiency of digesting those nutrients (i.e., digestibility). Many different methods have been used to measure digestibility of forages for wild herbivores, all of which rely on collecting rumen fluid from animals or incubation within animals. Animal-based methods can provide useful estimates, but the approach is limited by the expense of fistulated animals, wide variation in digestibility among animals, and contamination from endogenous and microbial sources that impairs the estimation of nutrient digestibility. We tested an in vitro method using a two-stage procedure using purified enzymes. The first stage, a 6 h acid–pepsin treatment, was followed by a combined 72 h amylase–cellulase or amylase–Viscozyme treatment. We then validated our estimates using in sacco and in vivo methods to digest samples of the same forages. In vitro estimates of dry matter (DM) digestibility were correlated with estimates of in sacco and in vivo DM digestibility (both P < 0.01). The in vitro procedure using Viscozyme (r2 = 0.77) was more precise than the in vitro procedure using cellulase (r2 = 0.59). Both procedures can be used to predict in sacco digestibility after correcting for the biases of each method. We used the in vitro method to measure digestibility of nitrogen (N; 0.07–0.95 g/g), which declined to zero as total N content declined below 0.03–0.06 g/g of DM. The in vitro method is well suited to monitoring forage quality over multiple years because it is reproducible, can be used with minimal investment by other laboratories without animal facilities, and can measure digestibility of individual nutrients such as N.


1995 ◽  
Vol 1995 ◽  
pp. 113-113
Author(s):  
D M Harris ◽  
A Barlet ◽  
A T Chamberlain

The pressure transducer technique has been proposed as a method of evaluating feed degradation characteristics (Theodorou, 1993) and it has been shown to predict the in vivo and in sacco degradability of forages (Blummel and Orskov, 1993). However the original technique requires rumen liquor and hence access to surgically prepared animals. Faecal material is generally easier to obtain and this work assessed it's suitability as an alternative source of microbes.Rumen liquor (R) and faeces (F) were collected simultaneously from a rumenally fistulated lactating dairy cow. R was mixed 1:1 with modified van Soest medium and F 1:2 to obtain similar dry matter contents. Homogenised strained 20 ml aliquats were inoculated into vented 250 ml bottles containing 180 ml of modified van Soest medium and 1.5g DM of a 7:3 mixture of milled air dried grass silage and 180 g CP / kg DM concentrates. The 7:3 ratio of silage and concentrates was chosen to reflect the diet the donor cow was consuming.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 194-195
Author(s):  
Jean-Philippe Marden ◽  
Virginie Marquis ◽  
Kheira Hadjeba Medjdoub ◽  
Marine Lacombe

Abstract Aflatoxins are secondary metabolites produced by Aspergillus species known to be the most prevalent contaminants in feedstuffs. In ruminants, contaminated AFB1 feeds usually exhibit symptoms including reduced feed efficiency and milk production and decreased appetite. The objective of this study was to investigate the effects of different concentrations of AFB1 on rumen fermentation parameters by using the ANKOM gas production protocol. Rumen fluid was collected from a cannulated dry dairy cow, filtered with cheese-cloth and diluted (1:1) with a standard buffer. Triplicates of 75 mL flasks were fed 0,75g of feed (79% corn silage, 15% alfalfa and 6% concentrates) and inoculated with 0 (blank), 0,2, 0,5, 1 and 2 ppm of AFB1. Flasks were placed in a rotating incubation at 39°C for 96h and connected to ANKOM GP system. After 96h of incubation, the contents of each flask were centrifuged. Supernatants were analyzed for total VFA and AFB1 while precipitates were dried at 104°C for DM disappearance. The experimentation was repeated weekly 3 times and named wk1, 2 and 3. Statistical analysis was done by SPSS using a univariate model. Results showed no significant differences on GP max at 96h among AFB1 concentrations. Only wk 1 showed that higher AFB1 concentration (2 ppm) decreased significantly (P &lt; 0,05) DM disappearance (- 8,2 pts) when compared to the blank. Total VFA contents (75,0 ± 1,6 mM) were not affected by AFB1. Wk 2 and 3 did not show any difference neither on DM disappearance nor on VFA (89,1 ± 1,6 mM; 110,2 ± 4,8 mM). It can be concluded that our in vitro model, GP did not reflect DM disappearance and it can be put forward that rumen fluid with low total VFA concentrations (≤ 75 mM) could be more sensible to AFB1 challenge.


2009 ◽  
Vol 49 (7) ◽  
pp. 563 ◽  
Author(s):  
David B. Coates ◽  
Robert J. Mayer

In a study that included C4 tropical grasses, C3 temperate grasses and C3 pasture legumes, in vitro dry matter digestibility of extrusa, measured as in vitro dry matter loss (IVDML) during incubation, compared with that of the forage consumed, was greater for grass extrusa but not for legume extrusa. The increase in digestibility was not caused by mastication or by the freezing of extrusa samples during storage but by the action of saliva. Comparable increases in IVDML were achieved merely by mixing bovine saliva with ground forage samples. Differences were greater than could be explained by increases due to completely digestible salivary DM. There was no significant difference between animals in relation to the saliva effect on IVDML and, except for some minor differences, similar saliva effects on IVDML were measured using either the pepsin–cellulase or rumen fluid–pepsin in vitro techniques. For both C4 and C3 grasses the magnitude of the differences were inversely related to IVDML of the feed and there was little or no difference between extrusa and feed at high digestibilities (>70%) whereas differences of more than 10 percentage units were measured on low quality grass forages. The data did not suggest that the extrusa or saliva effect on digestibility was different for C3 grasses than for C4 grasses but data on C3 grasses were limited to few species and to high digestibility samples. For legume forages there was no saliva effect when the pepsin–cellulase method was used but there was a small but significant positive effect using the rumen fluid–pepsin method. It was concluded that when samples of extrusa are analysed using in vitro techniques, predicted in vivo digestibility of the feed consumed will often be overestimated, especially for low quality grass diets. The implications of overestimating in vivo digestibility and suggestions for overcoming such errors are discussed.


1998 ◽  
Vol 22 ◽  
pp. 172-174
Author(s):  
D. L. Romney ◽  
F. C. Cadario ◽  
E. Owen ◽  
A .H. Murray

Parameters from in vitro gas production techniques could have potential as predictors of dry-matter intake (DMI) and digestibility. Fermentation is usually carried out under conditions where nitrogen (N) is not limiting. Therefore where N supply is a constraint to intake and digestibility, prediction equations may be inaccurate. This study compared the use of N-free and N-rich media in an in vitro fermentation method (Theodorou et al., 1994) and studied the relationships between in vitro and in vivo parameters obtained using both media.


1995 ◽  
Vol 1995 ◽  
pp. 113-113 ◽  
Author(s):  
D M Harris ◽  
A Barlet ◽  
A T Chamberlain

The pressure transducer technique has been proposed as a method of evaluating feed degradation characteristics (Theodorou, 1993) and it has been shown to predict the in vivo and in sacco degradability of forages (Blummel and Orskov, 1993). However the original technique requires rumen liquor and hence access to surgically prepared animals. Faecal material is generally easier to obtain and this work assessed it's suitability as an alternative source of microbes.Rumen liquor (R) and faeces (F) were collected simultaneously from a rumenally fistulated lactating dairy cow. R was mixed 1:1 with modified van Soest medium and F 1:2 to obtain similar dry matter contents. Homogenised strained 20 ml aliquats were inoculated into vented 250 ml bottles containing 180 ml of modified van Soest medium and 1.5g DM of a 7:3 mixture of milled air dried grass silage and 180 g CP / kg DM concentrates. The 7:3 ratio of silage and concentrates was chosen to reflect the diet the donor cow was consuming.


2017 ◽  
Vol 48 (2) ◽  
pp. 63-69
Author(s):  
M. Joch ◽  
V. Kudrna ◽  
B. Hučko

AbstractThe objective of this study was to determine the effects of geraniol and camphene at three dosages (300, 600, and 900 mg l-1) on rumen microbial fermentation and methane emission in in vitro batch culture of rumen fluid supplied with a 60 : 40 forage : concentrate substrate (16.2% crude protein, 33.1% neutral detergent fibre). The ionophore antibiotic monensin (8 mg/l) was used as positive control. Compared to control, geraniol significantly (P < 0.05) reduced methane production with increasing doses, with reductions by 10.2, 66.9, and 97.9%. However, total volatile fatty acids (VFA) production and in vitro dry matter digestibility were also reduced (P < 0.05) by all doses of geraniol. Camphene demonstrated weak and unpromising effects on rumen fermentation. Camphene did not decrease (P > 0.05) methane production and slightly decreased (P < 0.05) VFA production. Due to the strong antimethanogenic effect of geraniol a careful selection of dose and combination with other antimethanogenic compounds may be effective in mitigating methane emission from ruminants. However, if a reduction in total VFA production and dry matter digestibility persisted in vivo, geraniol would have a negative effect on animal productivity.


2021 ◽  
Vol 888 (1) ◽  
pp. 012076
Author(s):  
H Soetanto ◽  
RM Aprilia ◽  
MS Pramita ◽  
I Banna

Abstract This study aimed at elucidating the use of three different rumen fluid (RF) of indigenous cattle breeds i.e. Bali, Madura and Crossbred Ongole immediately after slaughtered at abattoir to evaluate the nutritive value of elephant grass( EG) -concentrate mixture using a standard in vitro gas production (IVGP) technique. Approximately 500 mg feed dry matter/syringe was added with 50 ml RF-buffer solution and incubated in a 39 0C water bath for 48 hours where gas production was observed at time intervals. Following termination of incubation the content was transferred into tare glass crucible to measure rumen dry matter (RDMD) and organic matter (ROMD) digestibility. The results showed that there was no significant different (P>0.05) in gas production parameters. In contrast, RDMD and ROMD differed significantly (P<0.01) among cattle breeds. RF from OCB resulted in the highest IVGP, RDMD and ROMD as compared with other RF sources. In conclusion, the use of RF from abattoir for IVGP measurement can be warranted using the same source of RF. The highest values resulted from OCB suggests that the abundance and variation in rumen microbiota may exist among cattle breeds.


Sign in / Sign up

Export Citation Format

Share Document