Effects of previous crop, sowing date, and winter and spring applications of nitrogen on the growth, nitrogen uptake and yield of winter wheat

1993 ◽  
Vol 121 (1) ◽  
pp. 1-12 ◽  
Author(s):  
G. F. J. Milford ◽  
A. Penny ◽  
R. D. Prew ◽  
R. J. Darby ◽  
A. D. Todd

SUMMARYMultifactorial experiments at Rothamsted Experimental Station in two contrasting seasons, 1985/86 and 1986/87, tested the effects of treatment combinations that varied the supply of nitrogen at important stages of crop development in autumn and spring on the grain yield and nitrogen content of September- and October-sown winter wheat. Treatments that altered the nitrogen supply in autumn were an application of winter fertilizer N and sowing the wheat after rape or oats, which left different amounts of residual N. These were combined with treatments which tested the effects of 200 kg N/ha in spring applied as early or late dressings and as single or divided dressings. The effect of applying an additional 50 kg N/ha in summer was also tested in 1985/86.In both experiments, larger yields were obtained from sowing in September than in October. The September-sown wheat grew better over winter in 1986/87 than in 1985/86 but the early advantage in size and N uptake resulted in enhanced production of straw rather than grain. Residues of N from previous crops were smaller after oats than rape in both years. This difference in soil N did not affect the over-winter growth and N uptake of the October-sown wheats. Neither this difference in residual N nor an application of fertilizer N in winter affected the yield of the following September-sown wheat in 1985/86 because autumn growth and N uptake were restricted by adverse weather. In 1986/87, however, wheat that followed oats yielded 0·42 t/ha less grain than wheat that followed rape, and the deficit in yield was removed by an application of fertilizer N equivalent to the deficit in soil N.Yields were decreased when the spring N was applied as a delayed, single dressing in April especially if the wheat was sown in September after oats, or was not given winter N. Yields were not affected by any of the other combinations of single v. divided dressings or early v. late applications of spring N, despite these being given at very different stages of apical development.The percentage of N in the harvested grain was greatly increased by winter applications of fertilizer N, especially to wheat grown after oats, by applying the spring N as a late, single dressing and, in 1986, by applying N in summer.

1987 ◽  
Vol 108 (1) ◽  
pp. 73-95 ◽  
Author(s):  
F. V. Widdowson ◽  
A. Penny ◽  
R. J. Darby ◽  
E. Bird ◽  
M. V. Hewitt

SummarySoil NO3-N and NH4-N were measured to 90 cm depth in autumn and again in spring, under several sets of winter wheat experiments, on contrasting sites. Crop samples were taken throughout the growing season, both before and after the fertilizer N was applied, to measure N uptake. The amount of NO3-N in soil at the outset of growth in autumn was related to the uptake of N by wheat not given any fertilizer N until April.The effect of sowing date (September v. October) on both crop and soil N was compared, as also was the effect of soil type (retentive of NO3-N v. readily leached) and previous crop (potatoes v. oats and wheat v. beans).The amounts of NO3-N in the soils in autumn related well with previous crop and declined gradually during winter on the heavier soils, but rapidly on the sandy soil, in the latter case as a consequence of leaching. On the heavier soils, where little leaching occurred, the decline in soil NO3-N related well with the amount of N taken up by September-sown wheat during autumn and winter, but not with that taken up by October-sown wheat, where NO3-N accumulated in the soil during winter, because uptake was so small. Hence delayed sowing enhanced the likelihood of losses of NO3-N by leaching or by denitrification. On the sandy soil at Woburn, whilst the September-sown wheat removed more N than the October-sown, losses of NO3-N by leaching were severe, so that late winter growth was restricted by shortage of N in soil, and the amount of N taken up was far smaller than at Rothamsted.The soil measurements distinguished between the NO3-N residues remaining after beans or wheat in the same field and between residues after oats or potatoes on soils of the same soil series, but in different fields on the same farm.The amount of NO3-N in soil and the N taken up by wheat in February-March were together used to adjust the amount of fertilizer N applied in April, using a balance sheet approach to meet a specific yield objective. Some of the N uptake data from these experiments are presented. This should aid the calculation of N requirement during specific growth periods and thus help improve the prediction of fertilizer N dressings in spring.


2001 ◽  
Vol 136 (1) ◽  
pp. 15-33 ◽  
Author(s):  
R. SYLVESTER-BRADLEY ◽  
D. T. STOKES ◽  
R. K. SCOTT

Experiments at three sites in 1993, six sites in 1994 and eight sites in 1995, mostly after oilseed rape, tested effects of previous fertilizer N (differing by 200 kg/ha for 1993 and 1994 and 300 kg/ha for 1995) and date of sowing (differing by about 2 months) on soil mineral N and N uptake by winter wheat cv. Mercia which received no fertilizer N. Soil mineral N to 90 cm plus crop N (‘soil N supply’; SNS) in February was 103 and 76 kg/ha after large and small amounts of previous fertilizer N respectively but was not affected by date of sowing. Previous fertilizer N seldom affected crop N in spring because sowing was too late for N capture during autumn, but it did affect soil mineral N, particularly in the 60–90 cm soil horizon, presumably due to over-winter leaching. Tillering generally occurred in spring, and was delayed but not diminished by later sowing. Previous fertilizer N increased shoot survival more than it increased shoot production. Final shoot number was affected by previous fertilizer N, but not by date of sowing. Overall, there were 29 surviving tillers/g SNS.N uptakes at fortnightly intervals from spring to harvest at two core sites were described well by linear rates. The difference between sowings in the fitted date with 10 kg/ha crop N was 1 month; these dates were not significantly affected by previous fertilizer. N uptake rates were increased by both previous fertilizer N and late sowing. Rates of N uptake related closely to soil mineral N in February such that ‘equivalent recovery’ was achieved in late May or early June. At one site there was evidence that most of the residue from previous fertilizer N had moved below 90 cm by February, but N uptake was nevertheless increased. Two further ‘satellite’ sites behaved similarly. Thus at 14 out of 17 sites, N uptake until harvest related directly and with approximate parity to soil mineral N in February (R2 = 0·79), a significant intercept being in keeping with an atmospheric contribution of 20–40 kg/ha N at all sites.It is concluded that, on retentive soils in the UK, SNS in early spring was a good indicator of N availability throughout growth of unfertilized wheat, because the N residues arising from previous fertilizer mineralized before analysis, yet remained largely within root range. The steady rates of soil mineral N recovery were taken as being dependent on progressively deeper root development. Thus, even if soil mineral N equated with a crop's N requirement, fresh fertilizer applications might be needed before ‘equivalent recovery’ of soil N, to encourage the earlier processes of tiller production and canopy expansion. The later process of grain filling was sustained by continued N uptake (mean 41 kg/ha) coming apparently from N leached to the subsoil (relating to previous fertilizer use) as well as from sources not related to previous fertilizer use; significant net mineralization was apparent in some subsoils.


1983 ◽  
Vol 100 (2) ◽  
pp. 461-471 ◽  
Author(s):  
M. H. Leitch ◽  
L. V. Vaidyanathan

SummarysLabelled fertilizer N (15N depleted ammonium sulphate) was used to investigate both soil and fertilizer N use by winter wheat established in contrasting seed beds, these being soil cultivated to 20 cm depth or left undisturbed. The crop's response to, and recovery of, a range of N levels from 0 to 280 kg/ha given as a divided application in spring, were measured over two seasons. It was found that during the first season the direct-drilled wheat took up, on average, more fertilizer N but less soil N than wheat in cultivated soil, probably through differences in organic-matter mineralization. The different cultivation systems produced similar grain yields at all rates of applied N; however, when no fertilizer N was given, dry-matter production and soil-N uptake by the crop in the undisturbed soil were substantially less than by the crop in the cultivated soil. Crop recovery of the fertilizer N at harvest was between 29 and 40% of that given. After harvest, an average of one third of the applied fertilizer N was found in the top 60 cm of the soil profile. In the following season on the same plots a second winter wheat crop, receiving no fertilizer N, was drilled. At harvest there was shown to be an increase in grain yield and soil- and fertilizer-N uptake at the higher srates of N given in the previous season. In spite of this the recovery of the labelled residues was small, no more than 6% of the original application, or 15% of the residues remaining in the soil, irrespective of cultivation system.


2002 ◽  
Vol 138 (4) ◽  
pp. 395-402 ◽  
Author(s):  
E. S. BASSIL ◽  
S. R. KAFFKA ◽  
R. A. HUTMACHER

Deep-rooted crops used in rotation can improve the overall water and N use efficiencies of cropping systems and help minimize nitrate leaching to groundwater. Safflower (Carthamus tinctorius L.) is a deep-rooted annual crop grown in Mediterranean regions that might be useful for this purpose. Safflower's response to residual soil N measured to 2.7 m in the soil profile was evaluated in 1998 in field plots in the San Joaquin Valley, California, USA that were used previously for cotton over a 9-year period and had been fertilized with nine N rates from 0 to 230 kg N/ha. Residual soil NO3-N measured prior to safflower planting increased with prior cotton fertilization rates. Amounts present to a soil profile depth of 2.7 m varied from 760 to 2600 kg/ha. Safflower seed yield increased with increasing pre-plant residual NO3-N levels, from 1700 kg/ha in the control to 2200 kg/ha, and then declined to 1800 kg/ha at the largest residual N level. Oil per cent, and oil yield were affected by soil N only at the largest residual N level, while oil composition was not affected. Root growth and N uptake at depth increased in plots with larger amounts of residual N compared to those with less. Results suggest that N fertilization applied to safflower could be reduced or even eliminated following crops previously fertilized at economic levels. Residual N should be accounted in growers' management programmes.


1991 ◽  
Vol 117 (2) ◽  
pp. 241-249 ◽  
Author(s):  
T. M. Addiscott ◽  
R. J. Darby

SUMMARYOptimum applications of N fertilizer, Nopt have been related successfully to the amount of mineral N in the soil, Nmin in some parts of Europe but not always in the UK. If there is a body of mineral N, QN, that ultimately lessens the need for N fertilizer, it will not remain constant in its amount or its position. Mineralization will add to QN, while the nitrate component of QN will be leached downwards.Also, part of QN will be taken up into the crop where it will continue to lessen the need for fertilizer N but will be safe from leaching. A computer model was used to simulate these processes for 23 experiments, covering five sites and five years, in which N opt had been estimated. From these simulations we derived trial values of QN that took account of mineral N to a series of depths on a series of dates. For each date we used the trial values to find the depth for which Nopt was best correlated with QN andassumed that this was the depth, dL, of the lower boundary of QN on that date. Thus dL was a collective value for all 23 experiments. The value of dLincreased throughout the winter and the spring and was very closely related to the cumulative average drainage through 0·5 m soil at Rothamsted. By 15 April, dL, was 1·66 m, a depth that was compatible with observations by others that winter wheat can remove mineral N to a depth of at least 1·5 m. We inferred two likely reasons why Nmin may fail as a predictor of Nopt in the UK: insufficient depth of sampling, and too wide a spread of sampling dates. The values of Nopt were shown to be related satisfactorily to the values of QN computed, without any measurements of mineral N, for appropriate depths on single dates.


1994 ◽  
Vol 74 (4) ◽  
pp. 443-451 ◽  
Author(s):  
A. A. Bomke ◽  
W. D. Temple ◽  
S. Yu

Winter wheat, Triticum aestivum, is a new crop in south coastal British Columbia. The purposes of this study were to characterize plant development, dry matter accumulation and N uptake under low input and intensively managed systems as well as to assess the capability of some of the region’s soils to supply N to the crop. Grain yields, crop development and dry matter and N accumulation were similar to those reported from southern England. High amounts of winter rainfall (November–April precipitation ranged from 523 to 1111 mm) leach virtually all residual NO3 from south coastal B.C. soils and, without N fertilization, result in uniformly N deficient winter wheat. The low input N regime, 75 kg N ha−1 at Zadoks growth stage 31, plus soil N mineralized subsequent to the winter leaching period were sufficient in this study to maximize grain and total aboveground crop dry matter yields, but not to achieve adequate grain protein contents. The soils in the study were capable of supplying N in amounts sufficient to support only 30–53% of the maximum N uptake between growth stages 31 and 78. Appropriate quantities and timing of N are critical to successful production of high-yielding, good-quality wheat in south coastal British Columbia. Nitrogen management is likely to be most efficient when guided by the stage of crop development and demand and not by spring soil sampling and mineral N analysis. Key words: Winter wheat, N demand, soil N supply, crop development, intensive crop management, low input


Soil Research ◽  
1989 ◽  
Vol 27 (4) ◽  
pp. 685 ◽  
Author(s):  
PE Bacon ◽  
LG Lewin ◽  
JW McGarity ◽  
EH Hoult ◽  
D Alter

The fate of 15N-labelled fertilizer applied to rice (Oryza sativa L) was studied in microplots established within two field experiments comprising a range of stubble levels, stubble management techniques, N application rates and times. The first experiment investigated uptake of soil and fertilizer N in plots where application of 0 or 100 kg N ha-1 to the previous rice crop had produced 11.5 and 16.1 t ha-1 of stubble respectively. The stubble was then treated in one of four ways-burn (no till); burn then cultivated; incorporated in autumn or incorporated at sawing. Microplots within these large plots received 60 kg ha-1 of 5% 15N enriched urea at sowing, just prior to permanent flood (PF), or just after panicle initiation (PI) of the second crop. The second experiment was undertaken within a field in which half of the plots had stubble from the previous three rice crops burned, while the other plots had all stubble incorporated. In the fourth successive rice crop, the two stubble management systems were factorially combined with three N rates (0, 70 or 140 kg N ha-1) and three application times (PF, PI or a 50 : 50 split between PF and PI). Nitrogen uptake and retention in the soil were studied within 15N-labelled microplots established within each of these large plots. Only 4% of the 15N applied at sowing in the first experiment was recovered in the rice crop, while delaying N application to PF or PI increased this to an average of 20% and 44% respectively over the two experiments. The doubling of N application rate doubled fertilizer N uptake and also increased uptake of soil N at maturity by 12 kgN ha-1. Three years of stubble incorporation increased average uptake of fertilizer and soil N in the second experiment by 5 and 12 kg N ha-1 respectively. In both experiments, the soil was the major source of N, contributing 66-96% of total N uptake. On average, in the fourth crop, 20% of fertilizer N was in the grain, 12% in the straw and 3% in the roots, while 23% was located in the top 300 mm of soil. A further 3% was in the soil below 300 mm. The remaining 39% was lost, presumably by denitrification.


1990 ◽  
Vol 70 (2) ◽  
pp. 461-472 ◽  
Author(s):  
B. A. DARROCH ◽  
D. B. FOWLER

Norstar winter wheat (Triticum aestivum L.) was examined in 11 trials with the objective of determining the pattern of dry matter and nitrogen (N) accumulation in dryland stubbled-in winter wheat grown in Saskatchewan. In all 4 yr of this study, replicated no-till field trials were supplemented with 0, 34, 67 and 100 kg N ha−1 applied as ammonium nitrate (34-0-0) in early spring. A fifth treatment of 200 kg N ha−1 was evaluated in the final year of trials. Plant samples were collected at 2-wk intervals. Early season N uptake was more rapid than dry matter accumulation and 89% of the total N, compared to 70% of the total dry matter, was present at anthesis (Zadoks growth stages 60–68). Poor soil moisture availability limited N uptake after anthesis. Consequently, N uptake during the growing season was best described by a quadratic equation, Nitrogen yield = −29.1 + 3.02 Z − 0.018 Z2, where Z represents the Zadoks growth stage. Nitrogen concentrations of the stems and leaves decreased during the growing season while the N concentration of spikes varied among trials. Nitrogen fertilization often produced large increases in tissue N concentration at the beginning of the growing season. These differences decreased with time and by the end of the season tissue N concentrations were usually similar for all N rates. In general, when residual soil N levels were low to intermediate and rainfall was adequate, N fertilization increased dry matter yield, plant N yield, grain yield and grain protein yield. Nitrogen fertilization increased plant N concentration, plant N yield, grain protein concentration and grain protein yield when soil N reserves were intermediate to high and rainfall was adequate.Key words: Nitrogen uptake, wheat (winter), nitrogen response, tissue nitrogen, grain protein, environment


2009 ◽  
Vol 89 (4) ◽  
pp. 403-411 ◽  
Author(s):  
S S Malhi ◽  
Y K Soon ◽  
S Brandt

Growing season rainfall affects fertilizer N recovery, particularly in semi-arid environments. However, the influence of rainfall distribution during the growing season is not well-understood. We conducted a 7-yr study (from 1997 to 2006) to assess this effect, and that of no-till (NT) vs. conventional tillage (CT), on fertilizer N recovery by spring wheat (Triticum aestivum L.) fertilized with 15N-labelled urea at 40 kg N ha–1 and grown on stubble on a Dark Brown Chernozem soil in Saskatchewan, Canada. Two of the seven experimental years had growing season rainfall close to normal, one was above normal and four were below normal. Tillage treatment did not affect 15N recovery by wheat; however, 15N recovery in the top 15 cm of soil averaged 47% under NT vs. 39% under CT (P = 0.02). Total N and 15N uptakes were most affected by "year" due to variation in growing season rainfall distribution. Excluding an ultra-low value of 3.8% (or 1.5 kg N ha–1) in 2002, due to extreme drought, 15N recovery by wheat averaged 47.5% (range 30–57%), and percent N derived from fertilizer was 12–20%. Rainfall in May correlated significantly with 15N and total N uptake (r = 0.605 and 0.699, respectively). The recovery of 15N in wheat head correlated negatively with June rainfall (r = –0.624), probably because more moisture increased soil N mineralization, which diluted the 15N pool. During grain filling, soil N uptake was 12–30 kg ha–1, compared with negligible amounts (< 7%) of 15N; however, about 15 kg ha–1 of 15N were remobilized vs. 34–74 kg ha–1 of soil N. It is concluded that, in this semi-arid region, fertilizer N uptake is influenced more by rainfall in May than other months of the growth period.Key words: 15N-labelled urea, fertilizer N recovery, N uptake, rainfall, remobilized N, tillage


Sign in / Sign up

Export Citation Format

Share Document