Response of safflower (Carthamus tinctorius L.) to residual soil N following cotton (Gossypium spp.) in rotation in the San Joaquin Valley of California

2002 ◽  
Vol 138 (4) ◽  
pp. 395-402 ◽  
Author(s):  
E. S. BASSIL ◽  
S. R. KAFFKA ◽  
R. A. HUTMACHER

Deep-rooted crops used in rotation can improve the overall water and N use efficiencies of cropping systems and help minimize nitrate leaching to groundwater. Safflower (Carthamus tinctorius L.) is a deep-rooted annual crop grown in Mediterranean regions that might be useful for this purpose. Safflower's response to residual soil N measured to 2.7 m in the soil profile was evaluated in 1998 in field plots in the San Joaquin Valley, California, USA that were used previously for cotton over a 9-year period and had been fertilized with nine N rates from 0 to 230 kg N/ha. Residual soil NO3-N measured prior to safflower planting increased with prior cotton fertilization rates. Amounts present to a soil profile depth of 2.7 m varied from 760 to 2600 kg/ha. Safflower seed yield increased with increasing pre-plant residual NO3-N levels, from 1700 kg/ha in the control to 2200 kg/ha, and then declined to 1800 kg/ha at the largest residual N level. Oil per cent, and oil yield were affected by soil N only at the largest residual N level, while oil composition was not affected. Root growth and N uptake at depth increased in plots with larger amounts of residual N compared to those with less. Results suggest that N fertilization applied to safflower could be reduced or even eliminated following crops previously fertilized at economic levels. Residual N should be accounted in growers' management programmes.

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2491
Author(s):  
Gabriel Dias Paiao ◽  
Fabián G. Fernández ◽  
Seth L. Naeve

Soil drainage is not considered in the N fertilizer guidelines for corn (Zea mays L.) in the US Midwest. This study investigated the influence of soil drainage on corn grain yield, N requirement, and residual soil N, and evaluated the utility of in-season soil N measurements to guide N application. This 6-year study in Minnesota, US on a corn–soybean (Glycine max [L.] Merr.) rotation had drained and undrained conditions and six at planting (PL) (0–225 in 45 kg N ha−1 increments) and four split (SP) N fertilizer rates (at planting/V6-V8—45/45, 45/90, 45/135, 45/179 kg N ha−1). The drained compared to undrained soil produced 8% more grain yield (12.8 vs. 11.9 Mg ha−1), 12% more N uptake (169 vs. 151 kg N ha−1), 16% lower optimal N rate (ONR) (160 vs. 193 kg N ha−1), 3.1% greater grain yield at ONR (13.5 vs. 13.1 Mg ha−1), and similar in season and residual soil N. Compared to SP, PL lowered ONR (151 vs. 168 kg N ha−1) in drained soils, and the opposite occurred for undrained soils (206 vs. 189 kg N ha−1). These results substantiate the agronomic benefits of artificial drainage and the need to incorporate drainage conditions into N management guidelines.


2016 ◽  
Vol 26 (6) ◽  
pp. 831-838 ◽  
Author(s):  
David Sotomayor-Ramírez ◽  
Miguel Oliveras-Berrocales ◽  
Linda Wessel-Beaver

Onion (Allium cepa) and tropical pumpkin (Cucurbita moschata) combined contribute 13% of the total gross agricultural income (GAI) for vegetable crops in Puerto Rico, which is estimated at $54.5 million. Both crops are usually rotated on an annual basis. In this study, an onion-tropical pumpkin rotation was used to test the effect of fertilizer-nitrogen (N) on agronomic indicators of onion (plant height, number of leaves per plant, leaf color index, and leaf nutrient concentration), yield of both onion and tropical pumpkin, and inorganic N changes in the soil profile. Three fertilizer-N levels (140, 196, 252 kg·ha−1) were applied to onion, followed by 112 and 280 kg·ha−1 of N applied to tropical pumpkin. For tropical pumpkin, N was applied in plots with the lowest and highest fertilizer-N levels from the previous onion crop. Changes in onion agronomic indicators with increasing N fertilization were either not significant or showed no clear trend. There was no increase in total and marketable yields and number of onions with increasing fertilizer-N levels. Tropical pumpkin yields significantly increased with 280 kg·ha−1 compared with 112 kg·ha−1 of N. Using 112 kg·ha−1 as a baseline fertilizer-N application, the value/cost ratio for tropical pumpkin was $12.70 per dollar of fertilizer-N. In low fertilizer-N plots, immediately available inorganic soil N (0 to 30 cm) did not change between the onion and tropical pumpkin crop, but then decreased at the end of the rotation. In high fertilizer-N plots, immediately available soil N greatly increased after onion, but then decreased at the end of the rotation. Potentially leachable soil N (30 to 100 cm) also increased after the onion crop and then decreased after pumpkin. However, in high fertilizer-N plots, potentially leachable soil N remained 44% higher at the end, compared with the beginning, of the rotation. The increased income attainable with the highest fertilizer-N in tropical pumpkin may be offset by greater residual soil N in the lower part of the soil profile, and the potential for this N to have a negative environmental impact.


1993 ◽  
Vol 121 (1) ◽  
pp. 1-12 ◽  
Author(s):  
G. F. J. Milford ◽  
A. Penny ◽  
R. D. Prew ◽  
R. J. Darby ◽  
A. D. Todd

SUMMARYMultifactorial experiments at Rothamsted Experimental Station in two contrasting seasons, 1985/86 and 1986/87, tested the effects of treatment combinations that varied the supply of nitrogen at important stages of crop development in autumn and spring on the grain yield and nitrogen content of September- and October-sown winter wheat. Treatments that altered the nitrogen supply in autumn were an application of winter fertilizer N and sowing the wheat after rape or oats, which left different amounts of residual N. These were combined with treatments which tested the effects of 200 kg N/ha in spring applied as early or late dressings and as single or divided dressings. The effect of applying an additional 50 kg N/ha in summer was also tested in 1985/86.In both experiments, larger yields were obtained from sowing in September than in October. The September-sown wheat grew better over winter in 1986/87 than in 1985/86 but the early advantage in size and N uptake resulted in enhanced production of straw rather than grain. Residues of N from previous crops were smaller after oats than rape in both years. This difference in soil N did not affect the over-winter growth and N uptake of the October-sown wheats. Neither this difference in residual N nor an application of fertilizer N in winter affected the yield of the following September-sown wheat in 1985/86 because autumn growth and N uptake were restricted by adverse weather. In 1986/87, however, wheat that followed oats yielded 0·42 t/ha less grain than wheat that followed rape, and the deficit in yield was removed by an application of fertilizer N equivalent to the deficit in soil N.Yields were decreased when the spring N was applied as a delayed, single dressing in April especially if the wheat was sown in September after oats, or was not given winter N. Yields were not affected by any of the other combinations of single v. divided dressings or early v. late applications of spring N, despite these being given at very different stages of apical development.The percentage of N in the harvested grain was greatly increased by winter applications of fertilizer N, especially to wheat grown after oats, by applying the spring N as a late, single dressing and, in 1986, by applying N in summer.


2002 ◽  
Vol 12 (2) ◽  
pp. 250-256 ◽  
Author(s):  
Hudson Minshew ◽  
John Selker ◽  
Delbert Hemphill ◽  
Richard P. Dick

Predicting leaching of residual soil nitrate-nitrogen (NO3-N) in wet climates is important for reducing risks of groundwater contamination and conserving soil N. The goal of this research was to determine the potential to use easily measurable or readily available soilclimatic-plant data that could be put into simple computer models and used to predict NO3 leaching under various management systems. Two computer programs were compared for their potential to predict monthly NO3-N leaching losses in western Oregon vegetable systems with or without cover crops. The models were a statistical multiple linear regression (MLR) model and the commercially available Nitrate Leaching and Economical Analysis Package model (NLEAP 1.13). The best MLR model found using stepwise regression to predict annual leachate NO3-N had four independent variables (log transformed fall soil NO3-N, leachate volume, summer crop N uptake, and N fertilizer rate) (P < 0.001, R2 = 0.57). Comparisons were made between NLEAP and field data for mass of NO3-N leached between the months of September and May from 1992 to 1997. Predictions with NLEAP showed greater correlation to observed data during high-rainfall years compared to dry or averagerainfall years. The model was found to be sensitive to yield estimates, but vegetation management choices were limiting for vegetable crops and for systems that included a cover crop.


2021 ◽  
Vol 13 (10) ◽  
pp. 5649
Author(s):  
Giovani Preza-Fontes ◽  
Junming Wang ◽  
Muhammad Umar ◽  
Meilan Qi ◽  
Kamaljit Banger ◽  
...  

Freshwater nitrogen (N) pollution is a significant sustainability concern in agriculture. In the U.S. Midwest, large precipitation events during winter and spring are a major driver of N losses. Uncertainty about the fate of applied N early in the growing season can prompt farmers to make additional N applications, increasing the risk of environmental N losses. New tools are needed to provide real-time estimates of soil inorganic N status for corn (Zea mays L.) production, especially considering projected increases in precipitation and N losses due to climate change. In this study, we describe the initial stages of developing an online tool for tracking soil N, which included, (i) implementing a network of field trials to monitor changes in soil N concentration during the winter and early growing season, (ii) calibrating and validating a process-based model for soil and crop N cycling, and (iii) developing a user-friendly and publicly available online decision support tool that could potentially assist N fertilizer management. The online tool can estimate real-time soil N availability by simulating corn growth, crop N uptake, soil organic matter mineralization, and N losses from assimilated soil data (from USDA gSSURGO soil database), hourly weather data (from National Weather Service Real-Time Mesoscale Analysis), and user-entered crop management information that is readily available for farmers. The assimilated data have a resolution of 2.5 km. Given limitations in prediction accuracy, however, we acknowledge that further work is needed to improve model performance, which is also critical for enabling adoption by potential users, such as agricultural producers, fertilizer industry, and researchers. We discuss the strengths and limitations of attempting to provide rapid and cost-effective estimates of soil N availability to support in-season N management decisions, specifically related to the need for supplemental N application. If barriers to adoption are overcome to facilitate broader use by farmers, such tools could balance the need for ensuring sufficient soil N supply while decreasing the risk of N losses, and helping increase N use efficiency, reduce pollution, and increase profits.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3871
Author(s):  
Jan Stefaniak ◽  
Barbara Łata

The aim of this study was to assess the enzymatic and non-enzymatic antioxidant status of kiwiberry (Actinidia arguta) leaf under different N regimes tested three times in field conditions during the 2015 growing season in two cultivars (‘Weiki’ and ‘Geneva’). Leaf total antioxidant capacity using ABTS, DPPH and FRAP tests was evaluated in the years 2015 to 2017, which experienced different weather conditions. Both cultivars exhibited a significant fall in leaf L-ascorbic acid (L-AA) and reduced glutathione (GSH) as well as global content of these compounds during the growing season, while total phenolic contents slightly (‘Weiki’) or significantly (‘Geneva’) increased. There was a large fluctuation in antioxidative enzyme activity during the season. The correlation between individual antioxidants and trolox equivalent antioxidant capacity (TEAC) depended on the plant development phase. The study revealed two peaks of an increase in TEAC at the start and end of the growing season. Leaf L-AA, global phenolics, APX, CAT and TEAC depended on the N level, but thiol compounds were not affected. Over the three years, TEAC decreased as soil N fertility increased, and the strength of the N effect was year dependent. The relationship between leaf N content and ABTS and FRAP tests was highly negative. The antioxidant properties of kiwiberry leaves were found to be closely related to the plant development phase and affected by soil N fertility.


Oecologia ◽  
2021 ◽  
Author(s):  
Juha Mikola ◽  
Katariina Koikkalainen ◽  
Mira Rasehorn ◽  
Tarja Silfver ◽  
Ulla Paaso ◽  
...  

AbstractFast-growing and slow-growing plant species are suggested to show integrated economics spectrums and the tradeoffs of fast growth are predicted to emerge as susceptibility to herbivory and resource competition. We tested if these predictions also hold for fast-growing and slow-growing genotypes within a silver birch, Betula pendula population. We exposed cloned saplings of 17 genotypes with slow, medium or fast height growth to reduced insect herbivory, using an insecticide, and to increasing resource competition, using naturally varying field plot grass cover. We measured shoot and root growth, ectomycorrhizal (EM) fungal production using ergosterol analysis and soil N transfer to leaves using 15N-labelled pulse of NH4+. We found that fast-growing genotypes grew on average 78% faster, produced 56% and 16% more leaf mass and ergosterol, and showed 78% higher leaf N uptake than slow-growing genotypes. The insecticide decreased leaf damage by 83% and increased shoot growth, leaf growth and leaf N uptake by 38%, 52% and 76%, without differences between the responses of fast-growing and slow-growing genotypes, whereas root mass decreased with increasing grass cover. Shoot and leaf growth of fast-growing genotypes decreased and EM fungal production of slow-growing genotypes increased with increasing grass cover. Our results suggest that fast growth is genotypically associated with higher allocation to EM fungi, better soil N capture and greater leaf production, and that the tradeoff of fast growth is sensitivity to competition, but not to insect herbivory. EM fungi may have a dual role: to support growth of fast-growing genotypes under low grass competition and to maintain growth of slow-growing genotypes under intensifying competition.


2014 ◽  
Vol 84 ◽  
pp. 83-92 ◽  
Author(s):  
Muhammad Imtiaz Rashid ◽  
Ron G.M. de Goede ◽  
Lijbert Brussaard ◽  
Jaap Bloem ◽  
Egbert A. Lantinga

Sign in / Sign up

Export Citation Format

Share Document