Nitrogen in the excreta of dairy cattle: changes during short-term storage

1993 ◽  
Vol 121 (1) ◽  
pp. 73-81 ◽  
Author(s):  
D. C. Whitehead ◽  
N. Raistrick

SUMMARYThe concentration of N in samples of urine from dairy cattle fed on grass herbage, or grass or maize silage, sometimes with additional concentrate feeds, ranged from 6·0 to 13·8 mg N/l with 67–91% of the total N being present as urea. The concentration of N in 11 samples of dung was 0·32–0·52% on a fresh weight basis (2·74–3·82% N in dry weight). About 18% of the dung N was contained in particulate material of > 0·2 mm diameter,c.72% in fine particulate plus colloidal material, andc.10% was soluble in the presence of A12(SO4)3.When urine was stored for 3 weeks, the urea component was hydrolysed with the formation of ammonium. The rate at which hydrolysis occurred was greatly influenced by temperature. Hydrolysis of urea was complete within 2 days at 35 °C, within 7 days at 20 °C and within 21 days at 10 °C, but was onlyc.90% complete after 21 days at 5 °C. The rate of hydrolysis of urinary urea-N at 20 °C was increased slightly by inoculation with slurry, dung or soil, and was also increased slightly by the greater aeration resulting from a continuous stream of bubbled air. No nitrification was detected, even in urine that was aerated for 6 weeks, probably because the process was inhibited under the conditions of high pH (9–10) and high concentrations of ammoniacal N.When dung was stored for 3 weeks at 5 or 10 °C, there was little change in the amount of organic matter or in the form of N. However, at higher temperatures, some mineralization occurred and the amount of organic matter declined by 8% at 20 °C and by 17% at 35 °C. About 10% of the organic N was converted to ammonium during 3 weeks at 20 °C, andc.18% at 35 °C.With a slurry prepared from approximately equal amounts of urine, dung and water, more of the dung material was mineralized than with the dung stored alone:c.15% of the organic matter was lost during 3 weeks at 5 °C and c. 34% at 35 °C. Despite this loss of organic matter, there was net immobilization of soluble N during the 3-week period by the solid fractions of the slurry, at all four temperatures.

2003 ◽  
Vol 60 (7) ◽  
pp. 888-896 ◽  
Author(s):  
Martin Kainz ◽  
Marc Lucotte ◽  
Christopher C Parrish

Relationships between organic matter (OM) compounds and methyl mercury concentrations ([MeHg]) have been examined in littoral and offshore sediments of Lake Lusignan (Québec). The highest [MeHg] were generally found at the sediment–water interface with exceptionally high concentrations at littoral sites (5.8 ± 1.3 ng·g dry weight–1), which were four times more elevated than at offshore sites (1.6 ± 0.77 ng·g dry weight–1). Source-specific fatty acid (FA) biomarkers identified that littoral sediments contained more than twice as much terrestrial and bacterial OM compounds than offshore sediments, whereas the amount of labile algal OM was three times higher at littoral sites. Results indicate that [MeHg] were higher in the presence of labile OM substrates, and the amount of terrestrial OM compounds could not predict [MeHg]. Correlations between [MeHg] and FA of Desulfovibrio desulfuricans (a sulfate-reducing bacterium producing MeHg) could significantly account for 36% of [MeHg] at offshore sites; however, no significant relationships were found at littoral sites. This study illustrates that the microbial dynamics involved in producing and degrading MeHg in lacustrine sediments are complex and cannot be predicted solely by the quantification of FA biomarkers in D. desulfuricans or by biomarkers in the OM itself.


1968 ◽  
Vol 14 (2) ◽  
pp. 139-145 ◽  
Author(s):  
M. Goldner ◽  
D. G. Glass ◽  
P. C. Fleming

In this investigation, Aerobacter cloacae is shown to inactivate cephalosporin by hydrolysis of its beta-lactam ring. This was demonstrated by iodine absorption and infrared absorption spectra.The values of the Michaelis constant obtained with cephalosporin C and deacetyl cephalosporin C indicate a great affinity of the Aerobacter's beta-lactamase for its substrate. The enzyme was most active at pH 7.0 and 37 C. Aqueous washings of the Aerobacter cells were a potent source of enzyme.The beta-lactamase of A. cloacae was active on both cephalosporin and penicillin. A higher rate of hydrolysis was observed with cephalosporin C and deacetyl cephalosporin C than with cephalothin and cephaloridine. The ratio of reaction rates on cephalosporin C to that on penicillin G was consistently of the order of 100 to 1. The activity on V, N, and especially the semisynthetic penicillins was also low.The A. cloacae enzyme was easily demonstrable in large amount without added inducer. By contrast, the activity of the beta-lactamase from Pseudomonas pyocyanea cannot be detected unless high concentrations of inducer are used.


1990 ◽  
Vol 70 (4) ◽  
pp. 621-628 ◽  
Author(s):  
B. M. OLSON ◽  
L. E. LOWE

Acid hydrolysis was used to examine organic matter (OM), C, N and S in adjacent uncultivated and cultivated (40 yr) sections of a humisol. Paired soil samples were collected along two transects, both of which included deep organic soil and an exposed mineral ridge. About one-third of the OM was hydrolyzed. Cultivation had no effect on hydrolysis of the deep organic soil, whereas the amount hydrolyzed was significantly reduced by 4.1% in the ridge samples. Total C hydrolyzed ranged from 22.8 to 26.9% with no effect caused by cultivation or transect position relative to the ridge. In contrast, 71.1–80.4% of total N and 39.1 to 49.3% of total S were hydrolyzed. Cultivation significantly reduced the proportion of total N hydrolyzed in the deep organic soil and the proportion of total S hydrolyzed in both the deep organic soil and the ridge sections. On a total soil weight basis, cultivation reduced the amount of OM, C, N and S hydrolyzed in the ridge samples by 43, 38, 44 and 39%, respectively, but had much less effect on the deep organic soil samples. For the most part the distribution of N forms was similar for the four transect sections. Most of the S hydrolyzed was in the hydriodic acid-reducible sulphur (HI-S) form. The hydrolyzates from the cultivated soil samples had higher C-S:HI-S ratios. The amount of S hydrolyzed in the OM was not affected by cultivation, whereas residue-S was increased by 35.1 to 64.7%. The problems encountered with S hydrolysis analysis were discussed. Key words: Cultivation, humisol, hydrolysis, organic matter, carbon, nitrogen, sulphur


1982 ◽  
Vol 62 (1) ◽  
pp. 195-201 ◽  
Author(s):  
R. K. PRANGE ◽  
D. P. ORMROD

Plants were grown in controlled environments at 24/18 °C or 18/12 °C light/dark temperatures with 8, 16 or 32 meq/L nitrate or ammonium concentrations in a complete nutrient solution applied twice weekly to perlite rooting medium. Frond length was not affected by any of the treatments. Ammonium nutrition, compared with nitrate, reduced frond fresh and dry weights, water use, frond water potential, frond diffusive conductance and foliar concentrations of Ca and carbohydrates. Ammonium N increased the foliar concentration of inorganic NH4+, organic N, total N, P, K, and Mn. Increasing N concentration in the nutrient solution had no significant effect on dry weight, but increased foliar concentrations of N (inorganic and organic) and decreased fresh weight, fronds per plant, water use, frond diffusive conductance and foliar concentrations of Mn. The higher temperature decreased frond dry weight and foliar carbohydrate concentrations but increased frond number in the first emergence and foliar concentrations of several nutrients.


1987 ◽  
Vol 67 (3) ◽  
pp. 521-531 ◽  
Author(s):  
M. GIROUX ◽  
T. SEN TRAN

The objective of this study was to compare several methods of estimating the availability of soil nitrogen to plants. Total soil N, organic matter content, mineralized N during a 2 wk incubation at 35 °C, organic N in 6 N HC1, 0.01 M NaHCO3 and 1 N KCl extracts, and finally mineral N extracted by 2 N KCl were evaluated and contrasted with N uptake by sugar beets cultivated on 19 soils in a greenhouse experiment. The relative yield or plant N uptake gave the highest correlation coefficients when both mineral and organic N fractions in soil extract were considered. The incubation methods gave the best correlation coefficient with relative yield (R2 = 0.85**). N contents in NaHCO3 extract were more correlated with relative yield or N uptake than total N, organic matter contents or N extracted by 6 N HCl or 1 N KCl. The UV absorbance values obtained at 205 nm with 0.01 M NaHCO3 extract were also well correlated with relative yield (R2 = 0.78**) and plant N uptake (R2 = 0.66**). At this wavelength, as well as at 220 nm, the absorbance was affected by mineral and organic N contents in the extract. However, at 260 nm, the UV absorbance was only related to organic N in the extract; consequently these absorbance values were less correlated with relative yield (R2 = 0.49**) or N uptake (R2 = 0.27*). Furthermore, the absorbance measured at 205 nm was too sensitive to NO3-N and organic N concentration and this relationship was not linear in the high-N concentration range. The UV absorbance at 220 nm in the 0.01M NaHCO3 extract seemed to be a promising method to evaluate the availability of soil N. Key words: Soil nitrogen, incubation, ultraviolet absorbance, hydrolyzable nitrogen


2015 ◽  
Vol 39 (1) ◽  
pp. 297-302 ◽  
Author(s):  
Mara Lucia Jacinto Oliveira ◽  
Ademir Sérgio Ferreira de Araujo ◽  
Wanderley José de Melo

Tannery sludge contains high concentrations of inorganic elements, such as chromium (Cr), which may lead to environmental pollution and affect human health The behavior of Cr in organic matter fractions and in the growth of cowpea (Vigna unguiculata L.) was studied in a sandy soil after four consecutive annual applications of composted tannery sludge (CTS). Over a four-year period, CTS was applied on permanent plots (2 × 5 m) and incorporated in the soil (0-20 cm) at the rates of 0, 2.5, 5.0, 10.0, and 20.0 Mg ha-1 (dry weight basis). These treatments were replicated four times in a randomized block design. In the fourth year, cowpea was planted and grown for 50 days, at which time we analyzed the Cr concentrations in the soil, in the fulvic acid, humic acid, and humin fractions, and in the leaves, pods, and grains of cowpea. Composted tannery sludge led to an increase in Cr concentration in the soil. Among the humic substances, the highest Cr concentration was found in humin. The application rates of CTS significantly increased Cr concentration in leaves and grains.


1996 ◽  
Vol 76 (4) ◽  
pp. 469-472 ◽  
Author(s):  
J. W. Paul ◽  
E. G. Beauchamp

A spring application of dairy cattle slurry (300 kg total N ha−1) on high- and low-fertility sites resulted in higher microbial biomass C during the growing season than on a control soil or a soil receiving 100 kg N ha−1 as urea. Microbial biomass C was also significantly higher on the high-fertility site and was reflected in greater N mineralization and N uptake by corn. There was no greater net N mineralization in the manured soil than in the control or fertilized soil as would be expected as a result of higher microbial biomass C and significant organic N contribution from the manure. Key words: Animal manure, nitrogen mineralization, corn, grain yields, soil fertility


2002 ◽  
Vol 45 (6) ◽  
pp. 25-40 ◽  
Author(s):  
E. Morgenroth ◽  
R. Kommedal ◽  
P. Harremoës

Carbon cycling and the availability of organic carbon for nutrient removal processes are in most wastewater treatment systems restricted by the rate of hydrolysis of slowly biodegradable (particulate) organic matter. To date, the mechanisms of hydrolysis are not well understood for complex substrates and mixed populations. Most mathematical models use a simple one-step process to describe hydrolysis. In this article, mechanisms of hydrolysis and mathematical models to describe these processes in wastewater treatment processes are reviewed. Experimental techniques to determine mechanisms of hydrolysis and rate constants are discussed.


1924 ◽  
Vol 6 (4) ◽  
pp. 439-452
Author(s):  
John H. Northrop

The rate of hydrolysis of edestin by trypsin at 40° and in the presence of 1 M NaCl has been studied. Under these conditions the enzyme is rapidly inactivated and the equation for the reaction may be written See PDF for Equation in which Et is the concentration of enzyme during the interval (T1–T2). This equation has been tested by determining the enzyme concentration at various times during the reaction and substituting these values in the above equation. The experimental results agree with this formula when the initial enzyme or edestin concentrations are varied. No anomalous results of varying substrate concentrations are apparent. It can further be assumed as a first approximation that the enzyme is decomposing monomolecularly and the equation can then be written See PDF for Equation This equation is also satisfactory provided high enzyme concentrations and low edestin concentrations are used. With high concentrations of edestin and low trypsin the effects of the products of the reaction on the enzyme become too large to be neglected and the formula no longer holds.


1943 ◽  
Vol 27 (2) ◽  
pp. 113-118 ◽  
Author(s):  
Boris Schwartz

1. The temperature characteristics for the hydrolysis of various concentrations of tributyrin, trivalerin, tricaproin, triheptylin, and tricaprylin have been determined. 2. The µ values for the hydrolysis of all concentrations of tributyrin by pancreatic lipase, except the most dilute, were found to be constant within the experimental error, 8,500 ± 1,000. 3. The temperature characteristics for the hydrolysis of trivalerin, tricaproin, triheptylin, and tricaprylin varied from approximately 8,500 ± 1,000 for the high concentrations to 12,400, 20,000, 22,400, and 23,700 respectively for the most dilute concentration of each. 4. An interpretation of these results was presented.


Sign in / Sign up

Export Citation Format

Share Document