A method for calculating the population/yield relations of groundnut (Arachis hypogaea) in semi-arid climates

1993 ◽  
Vol 121 (2) ◽  
pp. 213-222 ◽  
Author(s):  
S. N. Azam-Ali ◽  
R. C. Nageswara Rao ◽  
J. Craigon ◽  
K. D. R. Wadia ◽  
J. H. Williams

SUMMARYBetween 1980 and 1986, six field experiments were conducted to investigate the relations between planting density, total dry matter and pod yield of groundnut (Arachis hypogaea L. cv. TMV2) grown at different levels of irrigation and rainfall at two sites in central India. In general, the relationship between total dry matter and planting density for most treatments was well described by the function:where W is the crop dry weight per unit ground area, wm is the maximum weight per plant, Wm is the maximum crop weight per unit ground area and P is the plant population. Because the harvest index, h, was constant for each treatment irrespective of plant population, a similar equation described the relationship between pod yield and planting density. When nine of the eleven treatments planted in a square (i.e. 1:1) arrangement were compared, the asymptotic value Wm varied between treatments depending on available soil water and atmospheric demand. To quantify the effects of plant and environmental factors on crop productivity, a ‘transpiration equivalent’ (ωw; (g/kg)/kPa), i.e. the product of the dry matter/water ratio and mean seasonal saturation deficit D, was used as a crop constant to calculate productivity at each site or season from a knowledge of seasonal rainfall and/or irrigation and soil water-holding capacity. Thus, total crop productivity, W'8, was calculated using the equation W'8 = ωwS/D where S (mm) is a soil supply term dependent on soil water-holding capacity and monthly values of rainfall and/or irrigation. When values for Wm and W'8 were plotted against each other, a linear regression was obtained with a slope = 1·02 (R2 = 0·78). The mean harvest index of 0·38 was used to predict pod yield from a knowledge of W'8. It was concluded that of all the climatic, soil and management factors that influence crop growth in semi-arid situations, it is the interaction between the supply of and demand for water that ultimately determines total productivity, pod yield and optimum plant population.

1982 ◽  
Vol 18 (1) ◽  
pp. 93-100 ◽  
Author(s):  
S. U. Remison ◽  
E. O. Lucas

SUMMARYTwo maize cvs, FARZ 23 and FARZ 25, were grown at three densities (37,000, 53,000 and 80,000 plants/ha) in 1979 and 1980. Leaf area index (LAI) increased with increase in plant population and was at a maximum at mid-silk. Grain yield was highest at 53,000 plants/ha. There was no relation between LAI and grain yield but there was a positive correlation between LAI and total dry matter yield.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 310 ◽  
Author(s):  
Meng Kong ◽  
Jing Kang ◽  
Cheng-Long Han ◽  
Yan-Jie Gu ◽  
Kadambot H.M Siddique ◽  
...  

In semi-arid areas, alfalfa (Medicago sativa L.) is widely grown, but its growth is often restricted due to limited rainfall and soil nutrients, particularly phosphorus (P). Nutrient resorption is an effective strategy for dealing with nutrient shortages. Alleviation of these limited resources using film mulch and P fertilization—which are common practices in semi-arid areas—can affect the internal recycling of such nutrients. Little is known about such effects in alfalfa and the relationship between resorption efficiency and forage yield. We conducted a two-year field experiment in the semi-arid Loess Plateau of China using film mulch and P fertilization to investigate the response to long-term increasing soil water and P availability on leaf nitrogen (N), P, and potassium (K) concentrations and nutrient resorption characteristics in alfalfa. In green leaves, mulching significantly increased P concentration by an average of 5.5% but it had no significant effect on N concentration over two years, and it decreased K concentration by 16.1% in 2017. P fertilization significantly increased N concentrations to a greater degree in 2018 (8.1%) than 2017 (1.6%). P fertilization also significantly increased P concentrations by an average of 34.1% over two years. In contrast, P fertilization significantly decreased K concentration in the mulched treatment by an average of 17.3% in 2017 and 21.8% in 2018, but it had no effect in the no-mulch treatment. In senescent leaves, mulching significantly increased N concentration by an average of 3.9% and P concentration by an average of 16.7%, but it had no significant effect on K concentration over two years, while P fertilization significantly decreased N and K concentrations over two years by an average of 7.5%, and 32.8%, respectively. P fertilization significantly increased senesced P concentration by an average of 11.9% in 2017 and 17.5% in 2018; and year × mulching × P fertilization had a significant interaction on senesced leaf P concentration. For resorption efficiency, mulching decreased P resorption efficiency by an average of 3.0%, but it had no impact on N or K resorption efficiency, while P fertilization increased the N, P, and K resorption efficiencies in alfalfa by an average of 6.8%, 6.2%, and 76.4% over two years, respectively. Interactive effects of mulching and P fertilization were found on P and K resorption efficiencies over time. In addition, N and K resorption efficiencies were significantly higher in 2018 than in 2017. The application of P fertilizer without mulching resulted in positive correlations between forage yield and N, P, and K resorption efficiencies, but no correlations were observed under film mulch. That is, mulching changed the relationship between forage yield and N, P, and K resorption efficiencies in alfalfa, suggesting that N, P, and K resorption efficiencies may not be related to high yield. Our results provide new insights into the role of nutrient resorption in alfalfa in response to increasing soil water and P availability and the relationship between resorption efficiency and forage yield, which will help us to improve alfalfa yield in semi-arid regions.


2008 ◽  
Vol 12 (3) ◽  
pp. 899-911 ◽  
Author(s):  
I. Portoghese ◽  
V. Iacobellis ◽  
M. Sivapalan

Abstract. This paper investigates the impact of various vegetation types on water balance variability in semi-arid Mediterranean landscapes, and the different strategies they may have developed to succeed in such water-limited environments. The existence of preferential associations between soil water holding capacity and vegetation species is assessed through an extensive soil geo-database focused on a study region in Southern Italy. Water balance constraints that dominate the organization of landscapes are investigated by a conceptual bucket approach. The temporal water balance dynamics are modelled, with vegetation water use efficiency being parameterized through the use of empirically obtained crop coefficients as surrogates of vegetation behavior in various developmental stages. Sensitivity analyses with respect to the root zone depth and soil water holding capacity are carried out with the aim of explaining the existence of preferential soil-vegetation associations and, hence, the spatial distribution of vegetation types within the study region. Based on these sensitivity analyses the degrees of suitability and adaptability of each vegetation type to parts of the study region are explored with respect of the soil water holding capacity, and the model results were found consistent with the observed affinity patterns.


2003 ◽  
Vol 140 (4) ◽  
pp. 395-407 ◽  
Author(s):  
R. E. RUSKE ◽  
M. J. GOODING ◽  
S. A. JONES

Field experiments were conducted over 3 years to assess the effect of a triazole fungicide programme, and additions of strobilurin fungicides to it, on nitrogen uptake, accumulation and partitioning in a range of winter wheat cultivars. Commensurate with delayed senescence, fungicide programmes, particularly when including strobilurins, improved grain yield through improvements in both crop biomass and harvest index, although the relationship with green area duration of the flag leaf (GFLAD) depended on year and in some cases, cultivar. In all years fungicide treatments significantly increased the amount of nitrogen in the above-ground biomass, the amount of nitrogen in the grain and the nitrogen harvest index. All these effects could be linearly related to the fungicide effect on GFLAD. These relationships occasionally interacted with cultivar but there was no evidence that fungicide mode of action affected the relationship between GFLAD and yield of nitrogen in the grain. Fungicide treatments significantly reduced the amount of soil mineral N at harvest and when severe disease had been controlled, the net remobilization of N from the vegetation to the grain after anthesis. Fungicide maintained the filling of grain with both dry matter and nitrogen. The proportionate accumulation of nitrogen in the grain was later than that of dry matter and this difference was greater when fungicide had been applied. Effects of fungicide on grain protein concentration and its relationship with GFLAD were inconsistent over year and cultivar. There were several instances where grain protein concentration was unaffected despite large (1·5 t/ha) increases in grain yield following fungicide use. Dilution of grain protein concentration following fungicide use, when it did occur, was small compared with what would be predicted by adoption of other yield increasing techniques such as the selection of high yielding cultivars (based on currently available cultivars) or by growing wheat in favourable climates.


1976 ◽  
Vol 87 (1) ◽  
pp. 89-99 ◽  
Author(s):  
E. O. Lucas ◽  
G. M. Milbourn

SummaryThe growth and development of two varieties of Phaseolus vulgaris (Purley King and Limelight) were compared in two experiments in 1973 and 1974 at a range of planting density from 20 to 100 seeds/m2. Within this range, the relationship between seed yield and density in Purley King was asymptotic, although there was a suggestion that if even higher densities had been tested, a downward trend in yield might have occurred. The optimum density of planting for Purley King in Expt 1 was 50 seeds/m2 while that for Limelight was 40 seeds/m2. The corresponding densities in Expt 2 were 75 and 50 seeds/m2 respectively. Although number of branches per plant generally decreased with increasing density, there was no significant density effect on the number of nodes per plant. Thus stabilization of seed yield occurred even at quite low densities. Although in the low-density treatments, less vegetative tissue was produced, the peak of dry-matter yield occurred later after flowering and the slower subsequent senescence ensured the presence of active photosynthetic tissue throughout the pod-fill stage. Less pod retention occurred at high density which, combined with the ability of widely spaced plants to produce pods over a longer period, resulted in a similar number of pods per unit area over a wide range of density.Although the variety Purley King produced more than double the number of mature pods from its extra nodes and branches, it was outyielded by Limelight by 35% from the combined effect of more seeds per pod and a higher mean seed weight. Limelight also produced this high yield with less vegetative tissue. In both varieties it appeared that pod photosynthesis could take place, in Purley King because the pods were borne on higher nodes above the canopy and in Limelight due to the earlier senescence of its smaller leaf area. However, in spite of the apparent physiological advantages of Limelight, the pods are not borne high enough on this plant to enable satisfactory mechanical harvesting.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1880
Author(s):  
Cailong Xu ◽  
Ruidong Li ◽  
Wenwen Song ◽  
Tingting Wu ◽  
Shi Sun ◽  
...  

Optimizing the spatial distribution of plants under normal conditions of water and fertilizer is widely used by farmers to improve soybean yield. However, the relationship between soybean yield and spatial plant distribution in the field has not been well studied. This study examined the effect of planting density and plant distribution pattern on soybean plant growth, yield components, canopy light interception, and dry matter accumulation. We also analyzed the relationship between photosynthetic rate, dry matter accumulation, and yield under different planting densities and plant distribution. A two year field experiment was conducted during the 2018 and 2019 soybean planting seasons. Two planting densities (1.8 × 105 and 2.7 × 105 plants ha−1) and two plant distribution patterns (uniform and non-uniform plant spacing) were tested. Higher planting density significantly increased the canopy light interception and dry matter accumulation during soybean growth, leading to increased soybean productivity. The seed yield of soybean under higher planting density was 22.8% higher than under normal planting density. Soybean planted under uniform spacing significantly reduced the differences plant-to-plant. Uniform plant spacing significantly increased the canopy light interception and dry matter accumulation of the soybean population. In addition, the coefficient of variation of seed weight per plant between individual plants under uniform plant distribution decreased by 71.5% compared with non-uniform plant distribution. Furthermore, uniform plant distribution increased soybean seed yield by 9.5% over non-uniform plant distribution. This study demonstrates that increasing planting density under uniform plant distribution can be useful to obtain higher seed yield without increasing other farm inputs.


1981 ◽  
Vol 97 (1) ◽  
pp. 125-134 ◽  
Author(s):  
E. O. Lucas

SUMMARYThe growth and development of two new maize hybrids (FARZ 27 and FARZ 23) were studied in density experiments located at two contiguous ecological zones in Nigeria. The range of planting density used was from 2·6 to 6·6 plants/m2. Within this range, the relationship between dry-matter yield and density was asymptotic at final harvest. At the forest location of Jago (7·3 °N, 4·2 °E), both varieties attained optimum grain yield at planting density of 4·4 plants/m2, while at the derived savannah location of Alagunmu (7·8 °N, 4 °E), FARZ 23 attained optimum grain yield at 4·4 plants/m2and FARZ 27 attained its optimum grain yield at 6·6 plants/ma2. This response of the new maize varieties to density treatments indicates that they could be planted at higher densities than are now used in the country.Differences between varieties did not quite reach statistical significance but, at both locations, FARZ 27 produced more dry matter and grain per unit area than FARZ 23. FARZ 27 gave its higher grain yield mainly by producing more seeds per unit area than FARZ 23. Physiological measurements like net assimilation rate, crop growth rate and leaf area index were also higher for FARZ 27, although there were no significant differences between the varieties at most sampling dates. The partition of dry matter was identical in both varieties, although FARZ 27 showed a slightly better balance by partitioning more assimilates to the grain. Also, there was an indication of remobilization of stored assimilates from the stem to the grain in both varieties. Both varieties produced more dry matter and grain at the derived savannah location of Alagunmu than at the forest location of Jago. Physiological measurements were also higher at the derived savannah location.


1974 ◽  
Vol 82 (2) ◽  
pp. 277-282 ◽  
Author(s):  
D. C. E. Wurr ◽  
E. J. Allen

SummaryThree experiments are reported which investigated the effects of planting density and variety on the relationship between tuber dry-matter percentage and tuber size. In the first experiment dry-matter determinations were made on samples of tubers less than 3·8 cm and greater than 3·8 cm from different planting densities obtained at eight fortnightly harvests. Standard analysis of variance was used for each harvest date and apart from Maris Piper giving consistently higher dry-matter percentages than Pentland Crown for the same tuber sizes, effects were small and difficult to interpret. The reasons for the problems in interpretation, which were mainly due to differences in tuber size distribution, are discussed.In the second and third experiments the effects of tuber-size distribution were removed by regression analyses of tuber dry-matter percentage on tuber size in definable grades and curves were fitted to the data. These curves revealed that tuber dry-matter percentage tends to show a quadratic response to increasing tuber size and is affected by variety and stem density. The significance of these results is discussed.


1993 ◽  
Vol 44 (8) ◽  
pp. 1693 ◽  
Author(s):  
AG Condon ◽  
RA Richards ◽  
GD Farquhar

Carbon isotope discrimination (-) has been shown to be negatively correlated with water use efficiency for wheat cultivars grown in the glasshouse. In the field this negative correlation has been confirmed for peanut but it has yet to be confirmed for wheat. Indeed, several field studies on wheat have shown positive (rather than negative) relationships between dry matter production and -. The aim of this study was to determine the relationship between - and water use efficiency for wheat grown in a dryland environment characterized by winterlspring-dominant rainfall and terminal drought. Eight genotypes chosen to give a range in - of c. 2.0x10-3 were grown on a red earth at Moombooldool in the Riverina region of New South Wales. Water use and above-ground dry matter (DM) were measured over the course of the season. Water use was partitioned into transpiration and soil evaporation and values of crop water use efficiency (WET) and transpiration efficiency ( WT) calculated. To account for the effect on WT of seasonal changes in the vapour pressure deficit of the air (D), crop coefficients (k) were derived by multiplying WT by the transpiration-weighted average daytime value of D for each genotype. During the preanthesis period, when there was little limitation of soil water supply on growth, there was a positive relationship between DM and -, as observed previously. The relationship between WET and - also had a positive (though non-significant) trend, but the relationship between k and - was negative, i.e. once the effects of variation in the ratio T/ET and seasonal changes in D were accounted for, the negative correlation between water use efficiency and - re-emerged. This apparent conflict between WET and k arose because genotypes with high - values developed their leaf area faster, with two important consequences. First, high - genotypes transpired more of their water supply during the winter when D was low and the exchange of water for CO2 more efficient. Second, transpiration made up a greater proportion of total water use by high - genotypes. The relationship between water use efficiency and - was further complicated as the crops depleted the soil water store after anthesis. During this period DM production tended to be greater in low - genotypes that had conserved soil water in the preanthesis period. However, DM production also remained high for two high - genotypes. The cause of this variation in post-anthesis growth among high - genotypes was not established.


1995 ◽  
Vol 75 (4) ◽  
pp. 877-881
Author(s):  
J. Waddington ◽  
H. Steppuhn

Soil water limits alfalfa (Medicago sativa L.) growth in semi-arid southwest Saskatchewan. The dry matter yields of three alfalfa varieties with contrasting growth habits were compared when grown between tall wheatgrass [Thinopyrum ponticum (Podp.) Barkworth & D.H. Dewey] windbreaks spaced on 15-m centres, and when grown without windbreaks. Over a 7-yr period, and including the area occupied by the windbreaks, alfalfa yields were 2110 kg ha−1 dry matter on average. This was 40% more dry matter than from alfalfa grown outside the windbreaks. There were no consistent yield differences between the three varieties, but Beaver, a branch-rooted variety, produced more dry matter than Angus, a tap-rooted variety with fast regrowth potential, and Rangelander, a creeping-rooted variety, in the years when differences reached significance, and on average over the 7-yr period. Alfalfa regrowth was sufficient for a second cut in 3 of 7 yr. Cultivating to a depth of 35 cm with a Paraplow subsoiler prior to seeding had no effect on hay yields. Key words:Medicago sativa, dry matter yield, snow management


Sign in / Sign up

Export Citation Format

Share Document