The growth of two maize varieties in farmers' plots located at two contiguous ecological zones in Nigeria

1981 ◽  
Vol 97 (1) ◽  
pp. 125-134 ◽  
Author(s):  
E. O. Lucas

SUMMARYThe growth and development of two new maize hybrids (FARZ 27 and FARZ 23) were studied in density experiments located at two contiguous ecological zones in Nigeria. The range of planting density used was from 2·6 to 6·6 plants/m2. Within this range, the relationship between dry-matter yield and density was asymptotic at final harvest. At the forest location of Jago (7·3 °N, 4·2 °E), both varieties attained optimum grain yield at planting density of 4·4 plants/m2, while at the derived savannah location of Alagunmu (7·8 °N, 4 °E), FARZ 23 attained optimum grain yield at 4·4 plants/m2and FARZ 27 attained its optimum grain yield at 6·6 plants/ma2. This response of the new maize varieties to density treatments indicates that they could be planted at higher densities than are now used in the country.Differences between varieties did not quite reach statistical significance but, at both locations, FARZ 27 produced more dry matter and grain per unit area than FARZ 23. FARZ 27 gave its higher grain yield mainly by producing more seeds per unit area than FARZ 23. Physiological measurements like net assimilation rate, crop growth rate and leaf area index were also higher for FARZ 27, although there were no significant differences between the varieties at most sampling dates. The partition of dry matter was identical in both varieties, although FARZ 27 showed a slightly better balance by partitioning more assimilates to the grain. Also, there was an indication of remobilization of stored assimilates from the stem to the grain in both varieties. Both varieties produced more dry matter and grain at the derived savannah location of Alagunmu than at the forest location of Jago. Physiological measurements were also higher at the derived savannah location.

2021 ◽  
Vol 25 (01) ◽  
pp. 43-51
Author(s):  
Qinglong Yang

To better understand the accumulation and transport of substances under different planting densities, the adaptation of maize root and leaf in response to increasing planting densities was investigated. In this two-year filed study, three maize varieties, Fumin108 (FM), Xianyu335 (XY) and Dika159 (DK), were sown under three different planting densities: 15,000 (D1), 60,000 (D2) and 90,000 plants ha-1 (D3) during 2018 and 2019. Increase in planting density gradually increased leaf area index along with reduced leaf area and net photosynthetic rate of individual leaves. In the 0–20 cm soil layer, the average root dry matter decreased by 55.88 and 80.92%, and the average root number decreased by 31.18 and 38.71% under D2 and D3, respectively, compared with D1. With increase in planting density, yield and dry matter per plant of maize gradually decreased while yield and dry matter per ha was increased with increase in D1-D2 density and then flattened in D2-D3 density. Compared with D1, two-year average yield per plant was decreased by 34.10 and 51.87% under D2 and D3, respectively. The difference in the number of roots of XY, FM and DK were not significant, so change in variety did not alleviate the decrease in the number of roots. At higher planting densities (above D2), the increase in density did not increase per ha grain yield. In conclusion, the suitable plant density was about 60,000 plants ha-1 to harvest more yield of spring maize while density higher than that reduced leaf area and photosynthesis per plant. Moreover, leaf area, root number and net photosynthesis per plant was higher in lower planting density coupled with overall less yield on ha basis and thus seemed wastage of soil nutrients and light resources. © 2021 Friends Science Publishers


1982 ◽  
Vol 18 (1) ◽  
pp. 93-100 ◽  
Author(s):  
S. U. Remison ◽  
E. O. Lucas

SUMMARYTwo maize cvs, FARZ 23 and FARZ 25, were grown at three densities (37,000, 53,000 and 80,000 plants/ha) in 1979 and 1980. Leaf area index (LAI) increased with increase in plant population and was at a maximum at mid-silk. Grain yield was highest at 53,000 plants/ha. There was no relation between LAI and grain yield but there was a positive correlation between LAI and total dry matter yield.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 555 ◽  
Author(s):  
Chanchan Zhou ◽  
Yuancai Huang ◽  
Baoyan Jia ◽  
Shu Wang ◽  
Fugen Dou ◽  
...  

Nitrogen fertilization and planting density are two key factors that can interactively affect the grain yield of rice. Three different types of rice cultivars—inbred Shendao 47, inbred Shendao 505, and hybrid Jingyou 586—were applied to investigate the effects of the nitrogen (N) rate and planting density (D) on the aboveground biomass, harvest index, leaf photosynthetic features, grain yield, and yield components using a split-split-plot design at two sites over two continuous years. The main plots were assigned to four nitrogen fertilizer rates: 0 (N0), 140 (N1), 180 (N2), and 220 (N3) kg ha−1 N; the subplots were assigned to three planting densities: 25 × 104 (D1), 16.7 × 104 (D2), and 12.5 × 104 (D3) hills ha-1, and the sub-subplots were assigned to three rice cultivars. The results showed that the grain yield had a significantly positive correlation with the stomatal conductance (Gs), net photosynthesis rate (Pn), transpiration rate (Tr), chlorophyll content (SPAD value), leaf area index (LAI), panicles per unit area, and spikelets per panicle. The N rate and planting density had significant interaction effects on grain yield, and the maximum values of Shendao 47, Shendao 505, and Jingyou 586 appeared in N3D2, N2D1, and N3D3, respectively. The higher grain yield of midsized panicle Shendao 47 was mostly ascribed to both panicles per unit area and spikelets per panicle. More panicles per unit area and spikelets per panicle primarily contributed to a larger sink capacity of small-sized panicle rice Shendao 505 and large-sized panicle rice Jingyou 586. We found that the treatments N3D2, N2D1, and N3D3 could optimize the contradiction between yield formation factors for Shendao 47, Shendao 505, and Jingyou 586, respectively. Across years and sites, the regression analysis indicated that the combinations of nitrogen fertilization of 195.6 kg ha−1 with a planting density of 22 × 104 hills ha−1, 182.5 kg ha−1 with 25 × 104 hills ha−1, and 220 kg ha−1 with 13.1 × 104 hills ha−1 are recommended for medium-, small-, and large-sized panicle rice cultivars, respectively.


1975 ◽  
Vol 26 (1) ◽  
pp. 31 ◽  
Author(s):  
KS Fischer ◽  
GL Wilson

Growth analysis was applied to grain sorghum (cv. RS610) grown at low, medium and high population densities, i.e. 14,352, 143,520 and 645,836 plants ha-1 respectively. The medium densities had two arrangements of plants, square (S) and rectangular (R). Crop growth rates, inflorescence growth rates, leaf area indices, net assimilation rates and leaf growth rates were calculated from growth functions of plant dry matter and leaf area over time. Differences in crop growth rate between populations in the early stages were attributed to leaf area development—specifically to the initial leaf area (dependent on seedling number) and not to differences in leaf growth rates. Peak crop growth rates were 15.0, 27.5, 26.0 and 45.8 g m-2 day-1 for the low, medium (S), medium (R) and high populations respectively.The large difference between the growth rates of the medium (S) and the high populations was not explained by differences in the amount of radiation intercepted. Although leaf area indices were 4.6 and 10.2 respectively for the two populations, both canopies intercepted almost all of the noon radiation. Light extinction coefficients were 0.45 and 0.29 respectively. The relationship between net assimilation rate and leaf area index was such that for comparable leaf area indices above 2, plants at higher densities showed greater improvement in yield per unit increment in leaf area index. A maximum grain yield of 14,250 kg ha-1 was obtained at the high population density as a result of higher dry matter production, but a similar harvest index to that of the crops grown at the other densities. Inflorescence growth rate (g m-2 day-l) slightly exceeded crop growth rate in the latter part of grain filling, which indicated that there was some retranslocation to the grain of previously assimilated material. The maximum grain yield represents an efficiency of utilization of short-wave solar radiation during crop life of 2.5 x 10-6g cal-1. *Part IV, Aust. J. Agric. Res., 26: 25 (1975).


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 488
Author(s):  
Zhi Dou ◽  
Yangyang Li ◽  
Halun Guo ◽  
Linrong Chen ◽  
Junliang Jiang ◽  
...  

Rice–crayfish continuous production system offers high economic and ecology benefits, which developed rapidly in China. To investigate the effects of different mechanical transplanting methods and planting densities on rice yield and quality, Nanjing 2728 was used to determine rice growth performance under mechanically transplanted carpet seedling (MTCS) with equal row spacing (30 cm) at five spacings and mechanically transplanted pot seedling (MTPS) with wide and narrow rows (23 + 33 cm) at five spacings. The results showed that MTPS presented significantly higher rice yields than MTCS as more spikelets per panicle. Rice yields of both mechanical transplanting methods first increased and then reduced with decreasing planting density, and its highest value was obtained at 77.9 × 104 seedlings ha−1. Compared with MTCS at the same stage, rice tiller dynamics of MTPS first increased and then decreased. Additionally, its dry matter accumulation per stem at jointing, heading, and maturity stages, leaf area index, photosynthetic potential, crop growth rate, and net assimilation rate were all significantly higher relative to MTCS. For each mechanical transplanting method, dry matter accumulation per panicle, leaf area index, photosynthetic potential, crop growth rate, and net assimilation rate from the sowing to jointing stages declined with decreasing planting density, while dry matter accumulation per stem and net assimilation rate from the heading to maturity stages increased. Compared with MTCS, MTPS significantly improved rice milling and appearance quality, decreasing density was also beneficial to rice milling and appearance quality, while grain content of amylose and protein were not sensitive to both transplanting method and planting density. Consequently, MTPS with 13.8 cm plant spacing is a suitable mechanical transplanting method for Nanjing 2728 to obtain better yield and quality under rice–crayfish continuous production system.


1972 ◽  
Vol 12 (55) ◽  
pp. 165 ◽  
Author(s):  
JR Syme

Four wheats of similar maturity were compared at two seed rates and two nitrogen levels. The cultivars were two high-yielding Mexican semi-dwarf wheats, Pitic 62 and accession WW 15, one local semidwarf crossbred, HMR, and one Australian variety, Robin. At each of two sites WW 15 yielded most grain and Robin the least. Yield components, growth, development and leaf characters were studied at one site. The semi-dwarf wheats had a higher proportion of ear weight at anthesis and set more grains per ear and per unit area. The high yield of WW 15 was associated with many grains per ear and a dense ear population. There were relatively small differences in total dry matter yield and leaf area index. WW 15 formed the most leaves on the main stem, had the shortest period from flag leaf emergence to anthesis and showed delay in the senescence of its flag leaves. Its leaves were also particularly narrow and small. The early effects of a higher seed rate on crop growth diminished with time in the main experiment but resulted in a small increase in grain yield. Nitrogen stimulated growth throughout the season, but the increased vegetative potential was not fully reflected in grain yield. Both nitrogen and the higher seed rate hastened flag leaf senescence.


1967 ◽  
Vol 68 (1) ◽  
pp. 157-164 ◽  
Author(s):  
R. Q. Cannell

Net assimilation rate (E) was measured in three experiments involving related species and cultivated varieties with increasing grain yield potential in the genera Hordeum, Avena and Triticum. No consistent differences in E between the barley varieties were found, but in the oat and wheat experiments, Abundance and Atle respectively had lower values of E. However, these differences did not suggest that E had been influenced in selecting for grain yield. The relationship of E to dry-matter production was calculated and discussed.


1972 ◽  
Vol 78 (1) ◽  
pp. 73-78 ◽  
Author(s):  
B. O. Adelana ◽  
G. M. Milbourn

SUMMARYWork that has been reported from some African countries indicates a dependence of grain yield in maize on the duration of leaf area after flowering. This paper studies maize yield in south-east England and confirms work at a similar northern latitude in Canada which has shown that considerable remobilization of photosynthate from the stem to the ear takes place during the main ear fill period.A similar grain yield was obtained from two contrasting hybrids. In a short early hybrid, Kelvedon 75A, there was a low peak leaf area index (5·3) but the net assimilation rate was high due possibly to efficient light interception by leaves that maintained an erect posture. Stem dry matter was also low and hence in this hybrid the high reproductive/vegetative ratio shows that there has been economy in the production of leaves and stem, especially as a 48% stem loss occurred during the period of ear fill.In contrast, in a later hybrid, Anjou 210, the final shoot dry matter was 20% higher as the peak leaf-area index of 7·7 gave slightly higher crop growth rates than K 75A. Although the remobilization of stem dry matter was similar in both hybrids it was notable that a different partition of dry matter in the ears of Anjou 210 gave a higher grain/rachis ratio.


Author(s):  
А. I. Grabovets ◽  
V. P. Kadushkina ◽  
S. А. Kovalenko

With the growing aridity of the climate on the Don, it became necessary to improve the methodology for conducting the  breeding of spring durum wheat. The main method of obtaining the source material remains intraspecific step hybridization. Crossings were performed between genetically distant forms, differing in origin and required traits and properties. The use of chemical mutagenesis was a productive way to change the heredity of genotypes in terms of drought tolerance. When breeding for productivity, both in dry years of research and in favorable years, the most objective markers were identified — the size of the aerial mass, the mass of grain per plant, spike, and harvest index. The magnitude of the correlation coefficients between the yield per unit area and the elements of its structure is established. It was most closely associated with them in dry years, while in wet years it decreased. Power the correlation of the characteristics of the pair - the grain yield per square meter - the aboveground biomass averaged r = 0.73, and in dry years it was higher (0.91) than in favorable ones (0.61 - 0.70) , between the harvest and the harvest index - r = 0.81 (on average). In dry years, the correlation coefficient increased to 0.92. Research data confirms the greatest importance of the mass of grain from one ear and the plant in the formation of grain yield per unit area in both dry and wet years. In dry years, the correlation coefficient between yield and grain mass per plant was on average r = 0.80; in favorable years, r = 0.69. The relationship between yield and grain mass from the ear was greater — r = 0.84 and r = 0.82, respectively. Consequently, the breeding significance of the aboveground mass and the productivity of the ear, as a criterion for the selection of the crop, especially increases in the dry years. They were basic in the selection.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 313
Author(s):  
Guoqiang Zhang ◽  
Bo Ming ◽  
Dongping Shen ◽  
Ruizhi Xie ◽  
Peng Hou ◽  
...  

Achieving optimal balance between maize yield and water use efficiency is an important challenge for irrigation maize production in arid areas. In this study, we conducted an experiment in Xinjiang China in 2016 and 2017 to quantify the response of maize yield and water use to plant density and irrigation schedules. The treatments included four irrigation levels: 360 (W1), 480 (W2), 600 (W3), and 720 mm (W4), and five plant densities: 7.5 (D1), 9.0 (D2), 10.5 (D3), 12.0 (D4), and 13.5 plants m−2 (D5). The results showed that increasing the plant density and the irrigation level could both significantly increase the leaf area index (LAI). However, LAI expansion significantly increased evapotranspiration (ETa) under irrigation. The combination of irrigation level 600 mm (W3) and plant density 12.0 plants m−2 (D4) produced the highest maize yield (21.0–21.2 t ha−1), ETa (784.1–797.8 mm), and water use efficiency (WUE) (2.64–2.70 kg m−3), with an LAI of 8.5–8.7 at the silking stage. The relationship between LAI and grain yield and evapotranspiration were quantified, and, based on this, the relationship between water use and maize productivity was analyzed. Moreover, the optimal LAI was established to determine the reasonable irrigation level and coordinate the relationship between the increase in grain yield and the decrease in water use efficiency.


Sign in / Sign up

Export Citation Format

Share Document