Red and far-red light influence carbon partitioning, growth and flowering of bahia grass (Paspalum notatum)

1995 ◽  
Vol 125 (3) ◽  
pp. 355-359 ◽  
Author(s):  
F. J. Marousky ◽  
F. Blondon

SUMMARYBahia grass (Paspalum notatum Flugge) plants were grown in growth chambers at Gif, France, and at Gainesville in Florida, demonstrating that the species is a long-day plant and greatly influenced by light quality during the photosynthetic period. Flowering occurred in all instances when the middle of the dark period was interrupted with red or red + far-red light. With nightly interruptions of farred light, flowering occurred only when a sufficient quantity of far-red was present during the photosynthetic period. Plants grown under short days with nightly interruptions of red, far-red or red + far-red light had less starch accumulation and greater leaf growth and dry weight than plants grown without nightly light interruptions, whatever the light quality during the photosynthetic period. The treatments did not affect the partitioning of assimilates and flowering in the same way.

1960 ◽  
Vol 15 (4) ◽  
pp. 205-213 ◽  
Author(s):  
Erwin Bünning ◽  
Gabriele Joerrens

In Pieris brassicae, diapause is inhibited if long-day conditions are imposed during and immediately after the third molting. The critical daylength is approximately 14 hours. Under short-day conditions with a main light period of 6 or 12 hours’ duration, supplementary light given in the period from 14 to 16 hours after the beginning of the main light period will inhibit diapause. In contrast to this effect of late exposures to light, light given from 1 to 12 hours after the beginning of the main light period promotes diapause. Experiments with extremely long light periods (10—35 hours), but always with a dark period of 10 hours, show that these diurnal fluctuations in quantitative and qualitative responses to light can continue endogenously for several days. Thus, this time-measuring process operates through the mechanism of endogenous diurnal oscillations in just the same way as do photoperiodic reactions in plants.The inhibition of diapause by light in the second half of the diurnal oscillation (under long days or by light interruptions in the dark period) and the promotion by light in the first half (under short days) occur only with light of short wavelengths: ultraviolet, violet, and blue up to about 550 mμ. Yellow and red light act in the opposite fashion, giving diapause inhibition in the first half of the cycle and promotion in the second half. In white light the violet reaction predominates, so that diapause is promoted by short days and inhibited by long days.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1086f-1086
Author(s):  
M. G. Karlsson ◽  
J. W. Werner ◽  
H.C.H. McIntyre

The effect of temperature during the initial long day period on morphology and plant dry weight was determined for Begonia × hiemalis `Hilda'. Multistem cuttings were planted in 10 cm pots and grown at 13°, 16°, 19°, 22°, 25° or 28°C. The day length was 16 hours at an irradiance level of 280 ± 20 μmol·m-2s-1. After 21 days, the plants were moved to a greenhouse maintained at 20° ± 2°C and short days of 10 hours at 125 ± 20 μmol·m-2s-1. The plants were grown under short days for 14 days and then moved to a day length of 16 hours. At data collection 21 days later (56 days from planting), plant height averaged 185 mm for plants initially grown at 13°, 16°, 19° or 22°C while pants originally grown at 25° and 28°C were 40 and 78 mm shorter than plants started at lower temperatures. The mean number of shoots was 4 on plants exposed to 16°, 19°, 22° or 25°C during early development and decrease to 3 shoots for plants grown initially at 13° or 28°C. The average flower number on the main shoot was similar for plants first exposed to low and intermediate temperatures but decreased rapidly to 0 for plants with early exposure to 28°C. Plants in treatments with early temperatures of 19° or 22°C had the largest above ground dry weight at an average 460 mg.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 436E-436
Author(s):  
Teresa A. Cerny ◽  
Nihal C. Rajapakse ◽  
Ryu Oi

Growth chambers constructed from photoselective plastic films were used to investigate the effects of light quality on height manipulation and flowering of photoperiodic plant species. Three types of treatment films were used; control, a far-red light intercepting film (YXE-10) and a red light intercepting film (SXE-4). The red (600-700 nm):far-red (700-800 nm) ratios and phytochrome photoequilibrium estimates for the control, YXE-10 and SXE-4 films were 1.0 and 0.71, 1.5 and 0.77, and 0.71 and 0.67, respectively. The photosynthetic photon flux was adjusted to uniformity among chambers using neutral density filters. Spectral filters did not effect minimum and maximum air temperatures. Experiments were conducted using quantitative long day (Antirrhinum majus and Petunia × hybrida), quantitative short day (Zinnia elegans and Dendranthema × grandiflorum) and day-neutral (Rosa × hydrida) plant species under natural short-day conditions. Plants produced under the YXE-10 filters were significantly shorter than the control plants, while plants produced under the SXE-4 films had similar or increased height compared to the control plants. However, both height response and flowering times varied with the crop species. Flowering time of Rosa × hybrida plants was uniform among all treatments. Flowering of quantitative long-day plants was delayed by at least 10 days under the YXE-10 film and was most responsive to the filtered light. Flowering of quantitative short-day plants was delayed by 2 days under the YXE-10. Days to flower for plants produced under the SXE-4 film were similar to the control plants for all species tested.


2019 ◽  
Vol 99 (5) ◽  
pp. 688-700 ◽  
Author(s):  
Junwei Yang ◽  
Tingting Liang ◽  
Lu Liu ◽  
Tonghua Pan ◽  
Zhirong Zou

Stomatal opening/closure plays a key role in balancing a plant’s need to conserve water, while still allowing for the exchange of photosynthetic and respiratory gasses with the atmosphere. Stomatal opening/closure can be induced by differences in light quality but a detailed knowledge of the role of light in stomatal regulation in tomato is limited. In this study, we evaluated red and blue light-dependent stomatal opening processes in tomato seedlings and explored the mechanisms involved using different light-quality treatments. After 10 h of darkness, tomato seedlings were subjected to the following five treatments: monochromatic red light (R), 33% blue (2R1B), 50% blue (1R1B), 67% blue (1R2B), and monochromatic blue light (B) at 200 μmol m−2s−1light intensity. The highest stomatal conductance recorded were for 1R1B. Stomatal aperture under 1R1B showed a 92.8% increase after 15 min and a 28.6% increase after 30 min compared with under R alone. Meanwhile, the study shows that the expressions of the plasma membrane H+-ATPase in the leaf were regulated by different proportions of blue light. The results show that the expressions of HA1 and HA4 increased under 1R1B and 1R2B after 15 min of exposure compared with under R alone. Under 1R1B, our results also show net photosynthesis increased compared with R and B after longer treatments, which may be related to chloroplast ultrastructure, and leaf dry weight increased compared with under 1R2B or B alone, but there were no differences under the R and 2R1B light treatments.


1976 ◽  
Vol 3 (2) ◽  
pp. 207 ◽  
Author(s):  
LT Evans

Plants of L. temulentum grown in short days were exposed at various times during one night to mixtures of red (R) and far red (FR) light or to prolonged irradiation on a spectrograph. Irradiation with red light through the latter half of the 16-h night was inductive of flowering, its effect being enhanced by exposure to FR during the first 6 h after the period in daylight. Brief exposure to FR during this initial period was as effective as continuous irradiation with FR, and its effect was reversible by brief subsequent exposure to R, implicating the pigment phytochrome. Brief exposures to mixtures of R + FR at various times during the first 6 h in darkness were used to chart apparent changes in the two forms of phytochrome. To judge from the R + FR mixtures giving null responses, phytochrome reverted from the Pfr to the Pr form progressively over the first 5 h of darkness. There was no evidence of inverse reversion after an initial exposure to FR. Optimum flowering response required most of the phytochrome to be present in the Pfr form in the initial hours after daylight, followed by a rise in the proportion of the Pfr form to that set by R. Reflecting this shift during the night in the optimum proportion of Pfr, the spectrograph experiments indicated peak effectiveness in the far red region of the spectrum for irradiation at the end of the period in daylight, and in the red region (~670 nm) for irradiation during the latter part of the night. Flower induction in this long day plant is optimal when phytochrome is mostly in the Pr form early in the night, and in the Pfr form later, a sequence opposite to that required by short day plants such as Pharbitis nil and Chenopodium rubrum.


1984 ◽  
Vol 62 (9) ◽  
pp. 1880-1883
Author(s):  
Marianne Mousseau

Rooted cuttings of Anagallis arvensis grown in short days (SD) were given 1 to 4 long days (LD) consisting of nights interrupted by red light. Just after LD treatment, young upper leaves showed a lower net photosynthetic rate than leaves of SD control plants, measured at various light intensities and CO2 concentrations. Respiratory CO2 output decreased during the first interrupted night and remained lower for one or two SD after treatment. Net CO2 uptake during the light period decreased similarly, so that the total CO2 balance of the entire plant was the same as for SD plants during and immediately after the treatment. After one interrupted night, the transpiration rate was lower, especially in the morning. The water saturation deficit similarly decreased in young upper leaves after the LD treatment, but leaf water potential did not change. The observed changes in CO2 and H2O exchanges with alteration of photoperiod were associated with, and may be explained in terms of, stomatal movements.


Weed Science ◽  
1968 ◽  
Vol 16 (1) ◽  
pp. 58-60 ◽  
Author(s):  
Stuart Dunn ◽  
G. K. Gruendling ◽  
Aubrey S. Thomas

Large Crabgrass (Digitaria sanguinalis (L.) Scop.) and barnyardgrass (Echinochloa crusgalli (L.) Beauv.) plants were grown from seedlings to maturity under five light qualities of equal energy levels. For crabgrass, both fresh and dry weight yields of plant tops grown under red light and under cool white light were significantly greater than those under green, yellow, or blue light. Length of stem followed this same order. Effects of light quality on reproduction were not as consistent; green and blue light caused the largest numbers of seed heads to form, while yellow light delayed flowering and resulted in the least number and weight of seed heads. Somewhat similar responses to light were found with barnyardgrass plants, except that yields under yellow light were close to those under red light for this species. Blue light caused smallest plants in both kinds of weeds.


2007 ◽  
Vol 55 (1) ◽  
pp. 49-60 ◽  
Author(s):  
P. Jefferson ◽  
R. Muri

The low seedling vigour of Russian wildrye grass ( Psathyrostachys juncea ) (RWR) limits its use. Shading from durum wheat ( Triticum turgidum ) reduced RWR leaf number, tiller number, leaf area and seedling dry weight in a growth room experiment. Treatments with similar shading differed in tiller number and dry weight, which suggested that light quality may have also contributed to these responses. In a second growth room experiment, light intensity (PAR) and red:far-red light ratio (670:730 nm) were altered by coloured plastic filters suspended above seedlings of Russian wildrye, crested wheatgrass ( Agropyron desertorum ) (CWG) and Dahurian wildrye grass ( Elymus dahuricus ) (DWR). Leaf area, tiller number and dry weight of RWR seedlings were reduced by declining red:far-red light ratio while light intensity differences at similar red:far-red ratio did not affect these variables. CWG exhibited similar responses to declining red:far-red light ratio as RWR, except that it exhibited a seedling weight response to light intensity. DWR tiller number was not responsive to low red:far-red light ratio but rather to low light intensity. However, DWR seedling weight, tiller weight and leaf area were responsive to declining red:far-red light ratio. These results indicate that RWR seedlings are sensitive to light quality changes caused by neighbouring plants.


Author(s):  
Christos Latsos ◽  
Jasper van Houcke ◽  
Lander Blommaert ◽  
Gabrielle P. Verbeeke ◽  
Jacco Kromkamp ◽  
...  

AbstractThe cryptophyte Rhodomonas sp. is a potential feed source for aquaculture live feed and resource for phycoerythrin (PE) production. This research investigates the influence of light, both quality and quantity, on the biomass productivity, composition and growth rate of Rhodomonas sp. The incident light intensity used in the experiments was 50 μmolphotons m−2 s−1, irrespective of the colour of the light, and cultivation took place in lab-scale flat-panel photobioreactors in turbidostat mode. The highest productivity in volumetric biomass (0.20 gdry weight L−1 day−1), measured under continuous illumination, was observed under green light conditions. Blue and red light illumination resulted in lower productivities, 0.11 gdry weight L−1 day−1 and 0.02 g L−1 day−1 respectively. The differences in production are ascribed to increased absorption of green and blue wavelength by phycoerythrin, chlorophyll and carotenoids, causing higher photosynthetically usable radiation (PUR) from equal photosynthetically absorbed irradiance (PAR). Moreover, phycoerythrin concentration (281.16 mg gDW−1) was stimulated under red light illumination. Because photosystem II (PSII) absorbs poorly red light, the algae had to induce more pigments in order to negate the lower absorption per unit pigment of the incident available photons. The results of this study indicate that green light can be used in the initial growth of Rhodomonas sp. to produce more biomass and, at a later stage, red light could be implemented to stimulate the synthesis of PE. Fourier-transform infrared spectroscopy (FTIR) analysis demonstrated a significant difference between the cells under different light quality, with higher contents of proteins for samples of Rhodomonas sp. cultivated under green light conditions. In comparison, higher carbohydrate contents were observed for cells that were grown under red and blue light.


Sign in / Sign up

Export Citation Format

Share Document