Impact of climate change on soil erosion and the efficiency of soil conservation practices in Austria

2010 ◽  
Vol 148 (5) ◽  
pp. 529-541 ◽  
Author(s):  
A. KLIK ◽  
J. EITZINGER

SUMMARYThe goal of the present study was to assess the impact of selected soil protection measures on soil erosion and retention of rainwater in a 1·14 km2 watershed used for agriculture in the north-east of Austria. Watershed conditions under conventional tillage (CT), no-till (NT) and under grassland use were simulated using the Water Erosion Prediction Project (WEPP) soil erosion model. The period 1961–90 was used as a reference and results were compared to future Intergovernmental Panel on Climate Change (IPCC) scenarios A1B and A2 (2040–60).The simulations for the NT and grassland options suggested runoff would decrease by 38 and 75%, respectively, under the current climatic conditions. The simulation results suggest that, under future climate scenarios, the effectiveness of the selected soil conservation measures with respect to runoff will be similar, or decreased by 16–53%.The actual average net soil losses in the watershed varied from 2·57 t/ha/yr for conventional soil management systems to 0.01 t/ha/yr for grassland. This corresponds to a maximum average annual loss of about 0·2 mm, which is considered to be the average annual soil formation rate and therefore an acceptable soil loss. The current soil/land use does not exceed this limit, with most of the erosion occurring during spring time. Under future climate scenarios, the simulations suggested that CT would either decrease soil erosion by up to 55% or increase it by up to 56%. Under these conditions, the acceptable limits will partly be exceeded. The simulations of NT suggested this would reduce annual soil loss rates (compared to CT) to 0·2 and 1·4 t/ha, i.e. about the same or slightly higher than for NT under actual conditions. The simulation of conversion to grassland suggested soil erosion was almost completely prevented.The selected soil conservation methods maintain their protective effect on soil resources, independent of the climate scenario. Therefore, with small adaptations, they can also be recommended as sustainable soil/land management systems under future climatic conditions.However, based on the available climate scenarios, climate-induced changes in the frequency and intensity of heavy rainstorms were only considered in a limited way in the present work. As the general future trend indicates a strong increase of rainstorms with high intensity during summer months, the results of the present study may be too optimistic.

Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1149 ◽  
Author(s):  
Martin Piringer ◽  
Werner Knauder ◽  
Kathrin Baumann-Stanzer ◽  
Ivonne Anders ◽  
Konrad Andre ◽  
...  

(1) Background: The impact of odour sources as stock farms on neighbouring residential areas might increase in the future because the relevant climatic parameters will be modified due to climate change. (2) Methodology: Separation distances are calculated for two Central European sites with considerable livestock activity influenced by different orographic and climatic conditions. Furthermore, two climate scenarios are considered, namely, the time period 1981–2010 (present climate) and the period 2036–2065 (future climate). Based on the provided climatic parameters, stability classes are derived as input for local-scale air pollution modelling. The separation distances are determined using the Lagrangian particle diffusion model LASAT. (3) Results: Main findings comprise the changes of stability classes between the present and the future climate and the resulting changes in the modelled odour impact. Model results based on different schemes for stability classification are compared. With respect to the selected climate scenarios and the variety of the stability schemes, a bandwidth of affected separation distances results. (4) Conclusions: The investigation reveals to what extent livestock husbandry will have to adapt to climate change, e.g., with impacts on today’s licensing processes.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Susanne Rolinski ◽  
Alexander V. Prishchepov ◽  
Georg Guggenberger ◽  
Norbert Bischoff ◽  
Irina Kurganova ◽  
...  

AbstractChanges in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.


2021 ◽  
Vol 43 ◽  
pp. e56026
Author(s):  
Gabriela Leite Neves ◽  
Jorim Sousa das Virgens Filho ◽  
Maysa de Lima Leite ◽  
Frederico Fabio Mauad

Water is an essential natural resource that is being impacted by climate change. Thus, knowledge of future water availability conditions around the globe becomes necessary. Based on that, this study aimed to simulate future climate scenarios and evaluate the impact on water balance in southern Brazil. Daily data of rainfall and air temperature (maximum and minimum) were used. The meteorological data were collected in 28 locations over 30 years (1980-2009). For the data simulation, we used the climate data stochastic generator PGECLIMA_R. It was considered two scenarios of the fifth report of the Intergovernmental Panel on Climate Change (IPCC) and a scenario with the historical data trend. The water balance estimates were performed for the current data and the simulated data, through the methodology of Thornthwaite and Mather (1955). The moisture indexes were spatialized by the kriging method. These indexes were chosen as the parameters to represent the water conditions in different situations. The region assessed presented a high variability in water availability among locations; however, it did not present high water deficiency values, even with climate change. Overall, it was observed a reduction of moisture index in most sites and in all scenarios assessed, especially in the northern region when compared to the other regions. The second scenario of the IPCC (the worst situation) promoting higher reductions and dry conditions for the 2099 year. The impacts of climate change on water availability, identified in this study, can affect the general society, therefore, they must be considered in the planning and management of water resources, especially in the regional context


2015 ◽  
Vol 61 (4) ◽  
pp. 669-689 ◽  
Author(s):  
Pamela D. Noyes ◽  
Sean C. Lema

Abstract Global climate change is impacting organisms, biological communities and ecosystems around the world. While most research has focused on characterizing how the climate is changing, including modeling future climatic conditions and predicting the impacts of these conditions on biodiversity, it is also the case that climate change is altering the environmental impacts of chemical pollution. Future climate conditions are expected to influence both the worldwide distribution of chemicals and the toxicological consequences of chemical exposures to organisms. Many of the environmental changes associated with a warming global climate (e.g., increased average – and possibly extreme – temperatures; intense periods of drier and wetter conditions; reduced ocean pH; altered salinity dynamics in estuaries) have the potential to enhance organism susceptibility to chemical toxicity. Additionally, chemical exposures themselves may impair the ability of organisms to cope with the changing environmental conditions of the shifting climate. Such reciprocity in the interactions between climate change and chemicals illustrates the complexity inherent in predicting the toxicological consequences of chemical exposures under future climate scenarios. Here, we summarize what is currently known about the potential reciprocal effects of climate change and chemical toxicity on wildlife, and depict current approaches and ongoing challenges for incorporating climate effects into chemical testing and assessment. Given the rapid pace of new man-made chemistries, the development of accurate and rapid methods to evaluate multiple chemical and non-chemical stressors in an ecologically relevant context will be critical to understanding toxic and endocrine-disrupting effects of chemical pollutants under future climate scenarios.


2014 ◽  
Vol 94 (2) ◽  
pp. 213-222 ◽  
Author(s):  
Qi Jing ◽  
Gilles Bélanger ◽  
Budong Qian ◽  
Vern Baron

Jing, Q., Bélanger, G., Qian, B. and Baron, V. 2014. Timothy yield and nutritive value with a three-harvest system under the projected future climate in Canada. Can. J. Plant Sci. 94: 213–222. Timothy (Phleum pratense L.) is harvested twice annually in Canada but with projected climate change, an additional harvest may be possible. Our objective was to evaluate the impact on timothy dry matter (DM) yield and key nutritive value attributes of shifting from a two- to a three-harvest system under projected future climate conditions at 10 sites across Canada. Future climate scenarios were generated with a stochastic weather generator (AAFC-WG) using two global climate models under the forcing of two Intergovernmental Panel on Climate Change emission scenarios and, then, used by the CATIMO (Canadian Timothy Model) grass model to simulate DM yield and key nutritive value attributes. Under future climate scenarios (2040–2069), the additional harvest and the resulting three-harvest system are expected to increase annual DM yield (+0.46 to +2.47 Mg DM ha−1) compared with a two-harvest system across Canada but the yield increment will on average be greater in eastern Canada (1.88 Mg DM ha−1) and Agassiz (2.02 Mg DM ha−1) than in the prairie provinces of Canada (0.84 Mg DM ha−1). The DM yield of the first harvest in a three-harvest system is expected to be less than in the two-harvest system, while that of the second harvest would be greater. Decreases in average neutral detergent fibre (NDF) concentration (−19 g kg−1 DM) and digestibility (dNDF, −5 g kg−1 NDF) are also expected with the three-harvest system under future conditions. Our results indicate that timothy will take advantage of projected climate change, through taking a third harvest, thereby increasing annual DM production.


2021 ◽  
Vol 13 (21) ◽  
pp. 4360
Author(s):  
Andrew K. Marondedze ◽  
Brigitta Schütt

Monitoring urban area expansion through multispectral remotely sensed data and other geomatics techniques is fundamental for sustainable urban planning. Forecasting of future land use land cover (LULC) change for the years 2034 and 2050 was performed using the Cellular Automata Markov model for the current fast-growing Epworth district of the Harare Metropolitan Province, Zimbabwe. The stochastic CA–Markov modelling procedure validation yielded kappa statistics above 80%, ascertaining good agreement. The spatial distribution of the LULC classes CBD/Industrial area, water and irrigated croplands as projected for 2034 and 2050 show slight notable changes. For projected scenarios in 2034 and 2050, low–medium-density residential areas are predicted to increase from 11.1 km2 to 12.3 km2 between 2018 and 2050. Similarly, high-density residential areas are predicted to increase from 18.6 km2 to 22.4 km2 between 2018 and 2050. Assessment of the effects of future climate change on potential soil erosion risk for Epworth district were undertaken by applying the representative concentration pathways (RCP4.5 and RCP8.5) climate scenarios, and model ensemble averages from multiple general circulation models (GCMs) were used to derive the rainfall erosivity factor for the RUSLE model. Average soil loss rates for both climate scenarios, RCP4.5 and RCP8.5, were predicted to be high in 2034 due to the large spatial area extent of croplands and disturbed green spaces exposed to soil erosion processes, therefore increasing potential soil erosion risk, with RCP4.5 having more impact than RCP8.5 due to a higher applied rainfall erosivity. For 2050, the predicted wide area average soil loss rates declined for both climate scenarios RCP4.5 and RCP8.5, following the predicted decline in rainfall erosivity and vulnerable areas that are erodible. Overall, high potential soil erosion risk was predicted along the flanks of the drainage network for both RCP4.5 and RCP8.5 climate scenarios in 2050.


2019 ◽  
Vol 11 (12) ◽  
pp. 3353 ◽  
Author(s):  
Mohammad Reza Azimi Sardari ◽  
Ommolbanin Bazrafshan ◽  
Thomas Panagopoulos ◽  
Elham Rafiei Sardooi

Climate and land use change can influence susceptibility to erosion and consequently land degradation. The aim of this study was to investigate in the baseline and a future period, the land use and climate change effects on soil erosion at an important dam watershed occupying a strategic position on the narrow Strait of Hormuz. The future climate change at the study area was inferred using statistical downscaling and validated by the Canadian earth system model (CanESM2). The future land use change was also simulated using the Markov chain and artificial neural network, and the Revised Universal Soil Loss Equation was adopted to estimate soil loss under climate and land use change scenarios. Results show that rainfall erosivity (R factor) will increase under all Representative Concentration Pathway (RCP) scenarios. The highest amount of R was 40.6 MJ mm ha−1 h−1y−1 in 2030 under RPC 2.6. Future land use/land cover showed rangelands turning into agricultural lands, vegetation cover degradation and an increased soil cover among others. The change of C and R factors represented most of the increase of soil erosion and sediment production in the study area during the future period. The highest erosion during the future period was predicted to reach 14.5 t ha−1 y−1, which will generate 5.52 t ha−1 y−1 sediment. The difference between estimated and observed sediment was 1.42 t ha−1 year−1 at the baseline period. Among the soil erosion factors, soil cover (C factor) is the one that watershed managers could influence most in order to reduce soil loss and alleviate the negative effects of climate change.


Climate ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 139 ◽  
Author(s):  
Lingjun Hao ◽  
Daniel Herrera-Avellanosa ◽  
Claudio Del Pero ◽  
Alexandra Troi

Climate change imposes great challenges on the built heritage sector by increasing the risks of energy inefficiency, indoor overheating, and moisture-related damage to the envelope. Therefore, it is urgent to assess these risks and plan adaptation strategies for historic buildings. These activities must be based on a strong knowledge of the main building categories. Moreover, before adapting a historic building to future climate, it is necessary to understand how the past climate influenced its design, construction, and eventual categories. This knowledge will help when estimating the implication of climate change on historic buildings. This study aims at identifying building categories, which will be the basis for further risk assessment and adaptation plans, while at the same time analyzing the historical interaction between climate and human dwelling. The results show some correlations between building categories and climate. Therefore, it is necessary to use different archetypes to represent the typical buildings in different climate zones. Moreover, these correlations imply a need to investigate the capability of the climate-responsive features in future climate scenarios and to explore possible further risks and adaptation strategies.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2334
Author(s):  
Haiyan Fang

Total nitrogen (TN) and total phosphorous (TP) are the main pollutants affecting the water quality of the Miyun Reservoir, Beijing. However, few studies have been conducted on their responses to implemented soil conservation measures at a slope scale in northern China. To explore the impact of soil conservation measures on TN and TP losses, field monitored data from 18 runoff plots under natural rainfalls were used to analyze the changing characteristics of runoff, soil loss, and nutrient losses during 2014–2019. The results indicated that runoff, soil erosion, as well a TN and TP losses from the plots varied significantly, depending on land use and soil conservation measures. Bare plots suffered the highest soil, TN, and TP losses, followed by cultivated plots without soil conservation measures, cultivated plots with contour tillage, and other plots. Event-averaged runoff and soil loss rates ranged from 0 to 7.9 mm and from 0 to 444.4 t km−2 yr−1, and event-averaged TN and TP losses from cultivated plots were the highest, with values of 39.8 and 3.0 kg km−2, respectively. Bare and cultivated plots were the main sediment and nutrient sources. Among the cultivated plots, the terraced plot had the lowest soil and nutrient losses. The vegetated plots had insignificantly lower soil and nutrient losses. Most TN and TP were lost in particulate status from the plots, especially from the plots with soil conservation measures. Soil conservation measures can effectively prevent TN and TP losses. To guarantee water resource use, contour tillage is preferred for the bare and cultivated lands in the study region.


2017 ◽  
Vol 65 (4) ◽  
pp. 402-409 ◽  
Author(s):  
Jesús Rodrigo-Comino ◽  
Christine Brings ◽  
Thomas Iserloh ◽  
Markus C. Casper ◽  
Manuel Seeger ◽  
...  

AbstractIt is well known that rainfall causes soil erosion in sloping German vineyards, but little is known about the effect of age of plantation on soil erosion, which is relevant to understand and design sustainable management systems. In the Ruwer-Mosel valley, young (1- to 4-years) and old (35- to 38-years after the plantation) vineyards were selected to assess soil and water losses by using two-paired Gerlach troughs over three years (2013-2015). In the young vineyard, the overland flow was 107 L m-1and soil loss 1000 g m-1in the year of the plantation, and decreased drastically over the two subsequent years (19 L m-1; 428 g m-1). In the old vineyard, soil (from 1081 g m-1to 1308 g m-1) and water (from 67 L m-1to 102 L m-1) losses were 1.2 and 1.63 times higher, respectively, than in the young vineyard.


Sign in / Sign up

Export Citation Format

Share Document