Rheological and structural studies on heat-induced gelation of concentrated skim milk

1995 ◽  
Vol 62 (2) ◽  
pp. 257-267 ◽  
Author(s):  
Atsumi Tobitani ◽  
Haruyoshi Yamamoto ◽  
Toshiaki Shioya ◽  
Simon B. Ross-Murphy

SUMMARYHeat-induced gelation of milk was studied using both rheological and structural techniques. The sample was a conventional skim milk, concentrated with an ultrafiltration membrane, which formed gels when heated at appropriate pH. We investigated some factors that are considered to affect the gelation, such as concentration, pH and rennet treatment. The gelation process was monitored with a high precision oscillatory shear rheometer and the structure of gels was evaluated with quasi-elastic laser light scattering. From these results the gelation and phase separation behaviour were determined. By combining the results for different concentrations a phase diagram was obtained, which indicated that skim milk had a two-phase region on the higher temperature side. The effects of pH and rennet treatment were also evaluated with the aid of this phase diagram. The results were discussed on the basis of concepts of the phase behaviour of polymers, which were successfully developed in polymer physics.

2006 ◽  
Vol 59 (3) ◽  
pp. 225 ◽  
Author(s):  
Liang Gao ◽  
Tao Jiang ◽  
Buxing Han ◽  
Baoning Zong ◽  
Xiaoxin Zhang ◽  
...  

The oxidation of cyclohexane with H2O2 in a compressed CO2/acetic acid binary system was studied at 60.0 and 80.0°C, at pressures up to 18 MPa, and with the zeolite TS-1 as catalyst. The phase behaviour of the reaction system was also observed. There are three fluid phases in the reaction system at lower pressure but two at higher pressures. In the three-phase region the yields of the products, cyclohexanol and cyclohexanone, increase considerably with increasing pressure and reaches a maximum near the phase-separating pressure. CO2 can thus enhance the reaction effectively. However, the effect of pressure on the yield is very limited after the transition to a two-phase system.


2012 ◽  
Vol 602-604 ◽  
pp. 385-389
Author(s):  
Kuan Hui Hu ◽  
Xiang Dong Liu ◽  
De Xin Tian ◽  
Guan Wen Feng ◽  
Fang Yi Sun

The effect of different annealing temperature on microstructure and properties of the hot-stamping boron steel were studied.The results show that the yield strength of the test steel is reduced with increasing annealing temperature, only at 790°C,the specimen yield strength increased slightly, and showed a significant downward trend after 790°C.The specimen tensile strength and hardness with the change of the same trend when annealing temperature changes.And through the test we can see,at 760°C ,the test steel has entered a two-phase region,the test steel gain ferrite and pearlite when it is annealed below the temperature,it is easy to appear martensite microstructure when it is annealed in the higher temperature,and lead to the strength and hardness of the rise.


2007 ◽  
Vol 101 (9) ◽  
pp. 09N108 ◽  
Author(s):  
P. R. Ohodnicki ◽  
S. Y. Park ◽  
H. K. McWilliams ◽  
K. Ramos ◽  
D. E. Laughlin ◽  
...  

2011 ◽  
Vol 90 (12) ◽  
pp. 1434-1438 ◽  
Author(s):  
Q. Ye ◽  
J. Park ◽  
J.S. Laurence ◽  
R. Parthasarathy ◽  
A. Misra ◽  
...  

When adhesives and/or composites are bonded to the tooth, water in the environment can interfere with proper interface formation. Formation of water blisters and phase separation at the adhesive/dentin interface have appeared as new types of bond defects. To better understand this problem, we determined the near-equilibrium partition of the hydrophobic/hydrophilic components when exposed to over-wet environments. Model methacrylate-based adhesives were mixed with different amounts of water to yield well-separated aqueous and resin phases. It was found that less than 0.1% BisGMA but nearly one-third of the HEMA diffused into the aqueous phase, leaving the remaining resin phase relatively hydrophobic. A partial phase diagram was created for the ternary BisGMA/HEMA/water system. All the experimental phase partitioning data were plotted, and the points lay on a binodal curve that separated the single-phase region from the two-phase region. We obtained the 3 tie lines by connecting the 2 points of each conjugate pair of the phase partitioning data from the 3 sets of tripartite mixtures. Information about solubility, water miscibility, distribution ratio, and phase partitioning behavior could be obtained quantitatively. This type of phase diagram will provide a more thorough understanding of current adhesive performance and elucidate directions for further improvement.


Author(s):  
Lu Qiu ◽  
Rolf D. Reitz

Condensation of gaseous fuel is investigated in a low temperature combustion (LTC) engine fueled with double direct-injected diesel and premixed gasoline at two load conditions. Possible condensation is examined by considering real gas effects with the Peng–Robinson (PR) equation of state (EOS) and assuming thermodynamic equilibrium of the two fuels. The simulations show that three representative condensation events are observed. The first two condensations are found in the spray some time after the two direct injections (DI), when the evaporative cooling reduces the local temperature until phase separation occurs. The third condensation event occurs during the late stages of the expansion stroke, during which the continuous expansion sends the local fluid into the two-phase region again. Condensation was not found to greatly affect global parameters, such as the average cylinder pressure and temperature mainly because, before the main combustion event, the condensed phase was converted back to the vapor phase due to compression and/or first stage heat release. However, condensed fuel is shown to affect the emission predictions, including engine-out particulate matter (PM) and unburned hydrocarbons (UHCs). Specifically, it was shown that the condensed fuel comprised more than 95% of the PM in the low load condition, while its contribution was significantly reduced at the high load condition due to higher temperature and pressure conditions.


1978 ◽  
Vol 18 (05) ◽  
pp. 325-338 ◽  
Author(s):  
R.C. Nelson ◽  
G.A. Pope

Abstract Results of laboratory chemical floods are presented to show that equilibrium phases observed presented to show that equilibrium phases observed in test tubes are representative of phases produced in core flow experiments. Consequently, many performance characteristics of chemical floods can performance characteristics of chemical floods can be explained and predicted from equilibrium surfactant-brine-oil phase diagrams. An oil reservoir under chemical flooding can be visualized as a series of connected cells with phase equilibrium attained in each. Fluid flow from phase equilibrium attained in each. Fluid flow from one cell to the next is governed, not so much by initial properties of the oil, brine, or chemical slug and drive, as by properties of equilibrium phases formed from those fluids. Three types of equilibrium phase environment are defined. Results of interfacial tension measurements and laboratory flow experiments indicate that chemical floods should be designed to keep as much surfactant as possible for as long as possible in the "Type III" phase environment while the surfactant is traversing the reservoir. Introduction Recent research shows that when certain surfactants of interest in chemical flooding are equilibrated with brine and oil, the phases formed can be represented by relatively simple triangular phase diagrams. Furthermore, Healy and Reed phase diagrams. Furthermore, Healy and Reed revealed that surfactant-rich equilibrium phases, while immiscible with brine and oil, can displace waterflood residual oil effectively. Other papers involving phases of chemical flooding systems have appeared subsequently. This paper extends the use of phase diagrams in chemical flooding research by presenting laboratory evidence that the same phases, observed when surfactant, brine, and oil are equilibrated in sample tubes, form and transport in a core under a chemical flood. This interrelationship between surfactant-brine-oil phase behavior and the characteristics of chemical flooding is reminiscent of the interrelationship between alcohol-brine-oil phase behavior and the characteristics of alcohol flooding as described by Tabor et al. We discuss here some consequences of local phase equilibrium in an oil reservoir under a chemical flood. First, we review briefly the phase diagram representation. Next, visualizing the core as a series of connected mixing cells in each cell of which phase equilibrium is attained, we prescribe conditions for effluent liquids, based on phase diagrams for surfactant-brine-oil systems. Then, we compare results of flow experiments with those prescribed conditions. prescribed conditions. PHASE DIAGRAM REPRESENTATION PHASE DIAGRAM REPRESENTATION Following Healy et al., Fig. 1 illustrates three types of generalized phase diagram for three quasi-single components - surfactant, brine, and oil. These phase diagrams represent what we define as "phase environments." A surfactant-brine-oil system in any of the three phase-environment types can equilibrate as a single phase or as multiple phases, depending on the over-all composition of phases, depending on the over-all composition of the system. At high-surfactant concentrations, all phase environments ideally are single phase. At lower-surfactant concentrations in a Type II(-) phase environment, two equilibrium phases are phase environment, two equilibrium phases are present. As indicated by the tielines in the present. As indicated by the tielines in the two-phase region, one phase is essentially pure oil and the other is a homogeneous phase containing surfactant, brine, and oil. Here, we shall call such a phase a "microemulsion." We use this term only to describe a phase containing surfactant, brine, and oil apparently in thermodynamic equilibrium with one or more other phases. The term does not suggest a particular concept regarding the structure of that phase. Thus, in a Type II(-) phase environment, the maximum number of equilibrium phases is two. When surfactant, brine, and oil are plotted as in Fig. 1, the tielines in the two-phase region have a negative slope; hence the "II(-)" designation. SPEJ P. 325


1997 ◽  
Vol 496 ◽  
Author(s):  
Anton Van Der Ven ◽  
Mehmet K Aydinol ◽  
Gerbrand Ceder

ABSTRACTThe electrochemical properties of the layered intercalation compound LiCoO2 used as a cathode in Li batteries have been investigated extensively in the past 15 years. Despite this research, little is known about the nature and thermodynamic driving forces for the phase transformations that occur as the Li concentration is varied. In this work, the phase diagram of LixCoO2 is calculated from first principles for x ranging from 0 to 1. Our calculations indicate that there is a tendency for Li ordering at x = 1/2 in agreement with experiment [1]. At low Li concentration, we find that a staged compound is stable in which the Li ions selectively segregate to every other Li plane leaving the remaining Li planes vacant. We find that the two phase region observed at high Li concentration is not due to Li ordering and speculate that it is driven by a metal-insulator transition which occurs at concentrations slightly below x < 1.


1965 ◽  
Vol 43 (8) ◽  
pp. 2319-2327 ◽  
Author(s):  
L. J. Bartha ◽  
W. A. Alexander

Activities of cadmium in gold alloys with up to 50 atom % Cd have been determined by an isopiestic method. The partial molar free energy, entropy, and heat of solution in the alpha and beta phases are calculated between 500 and 600 °C. The phase boundaries have been observed between 16 and 60 atom % above 400 °C. The boundaries of the two-phase regions α2 + β and β + δ′ are found at somewhat different concentrations than before, but the two-phase region α + α2 was not observed.


1985 ◽  
Vol 54 ◽  
Author(s):  
B. X. Liu ◽  
L. J. Huang ◽  
J. Li ◽  
S. Ma

ABSTRACTThe extended Structural Difference Rule for amorphous phase formation states that an amorphous phase can be obtained by ion mixing with an alloy with a composition lying in a two-phase region in the equilibrium phase diagram. This criterion has to respond to the challenge that no amorphous alloy has been formed in some early studied systems exhibiting a two-phase region character, e.g. Ag-Cu(typical eutec-tic),Ag-Ni(almost entirely immiscible),etc‥We performed ion mixing experiments for several systems at liquid nitrogen temperature using Xe ions with low current density. Amorphization was indeed observed in both Ag-Cu and Ag-Ni samples, as two halos were seen by TEM SAD immediately after adequate doses ion mixing. These not only support our two-pnase region rule, but also show the possibility of amorphization in a system(Ag-Ni) that has large positive heat of formation.


Sign in / Sign up

Export Citation Format

Share Document