Functional analysis of the dairy cow mammary transcriptome between early lactation and mid-dry period

2019 ◽  
Vol 86 (1) ◽  
pp. 63-67 ◽  
Author(s):  
Ye Lin ◽  
He Lv ◽  
Minghui Jiang ◽  
Jinyu Zhou ◽  
Shuyuan Song ◽  
...  

AbstractIn this research communication we used digital gene expression (DGE) analysis to identify differences in gene expression in the mammary glands of dairy cows between early lactation and the mid-dry period. A total of 741 genes were identified as being differentially expressed by DGE analysis. Compared with their expression in dry cows, 214 genes were up-regulated and 527 genes were down-regulated in lactating cow mammary glands. Gene Ontology analysis showed that lactation was supported by increased gene expression related to metabolic processes and nutrient transport and was associated with decreased gene expression related to cell proliferation. Pathway mapping using the Kyoto Encyclopedia of Genes and Genomes showed that 579 differentially expressed genes had pathway annotations related to 204 pathways. Metabolic pathway-related genes were the most significantly enriched. Genes and pathways identified by the present study provide insights into molecular events that occur in the mammary gland between early lactation and mid-dry period, which can be used to facilitate further investigation of the mechanisms underlying lactation and mammary tissue remodeling in dairy cows.

2015 ◽  
Vol 98 (2) ◽  
pp. 1033-1045 ◽  
Author(s):  
J. Chen ◽  
J.J. Gross ◽  
H.A. van Dorland ◽  
G.J. Remmelink ◽  
R.M. Bruckmaier ◽  
...  

2017 ◽  
Vol 84 (4) ◽  
pp. 414-417 ◽  
Author(s):  
Mario Baratta ◽  
Silvia Miretti ◽  
Paolo Accornero ◽  
Giovanna Galeati ◽  
Andrea Formigoni ◽  
...  

The work reported in this Research Communication describes the modification in epithelial cell populations during the first and the last month of milking in Holstein Friesian cows that have undergone different management during the dry period, and we report the differential expression of CD49f+ and cytokeratin18+ cell subpopulations. Twenty six cows were randomly divided into 2 balanced groups that were housed at stocking density of either 11 m2 (CTR) or 5 m2 from 21 ± 3 d before the expected calving until calving. Cells collected from milk samples taken in early lactation and late lactation were directly analysed for CD45, CD49f, cytokeratin 14, cytokeratin 18 and cell viability. We observed a differential expression with a significant reduction in CD49f+ (P < 0·01) and cytokeratin 18+ (P < 0·05) cells in early lactation. Differences were still evident in late lactation but were not significant. These observations suggest that mammary epithelial cell immunophenotypes could be associated with different animal management in the dry period and we hypothesise they may have a role as biomarkers for mammary gland function in dairy cows.


2002 ◽  
Vol 2002 ◽  
pp. 197-197
Author(s):  
C A Middlemass ◽  
C M Minter ◽  
M Marsden

Through the dry period to early lactation the cow goes through a dramatic change in her metabolism. To supply the high energy requirement in early lactation fat supply from the diet and body mobilisation increases substantially. As a result, the liver accumulates fat, the rate of detoxification slows down, ammonia accumulates and there’s a reduced supply of fat, glucose and protein to the udder. This trial was designed to evaluate the response of dairy cows to product called ABN-LiFT a proprietary mixture of B-group vitamins and methyl group donors (rumen protected choline, niacin, vitamin B12, biotin, folic acid and thiamine) designed to reduce the accumulation of triglycerides in the liver and accelerate VLDL export.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Nan Liu ◽  
Yunyao Jiang ◽  
Min Xing ◽  
Baixiao Zhao ◽  
Jincai Hou ◽  
...  

Aging is closely connected with death, progressive physiological decline, and increased risk of diseases, such as cancer, arteriosclerosis, heart disease, hypertension, and neurodegenerative diseases. It is reported that moxibustion can treat more than 300 kinds of diseases including aging related problems and can improve immune function and physiological functions. The digital gene expression profiling of aged mice with or without moxibustion treatment was investigated and the mechanisms of moxibustion in aged mice were speculated by gene ontology and pathway analysis in the study. Almost 145 million raw reads were obtained by digital gene expression analysis and about 140 million (96.55%) were clean reads. Five differentially expressed genes with an adjusted P value < 0.05 and |log⁡2(fold  change)| > 1 were identified between the control and moxibustion groups. They were Gm6563, Gm8116, Rps26-ps1, Nat8f4, and Igkv3-12. Gene ontology analysis was carried out by the GOseq R package and functional annotations of the differentially expressed genes related to translation, mRNA export from nucleus, mRNA transport, nuclear body, acetyltransferase activity, and so on. Kyoto Encyclopedia of Genes and Genomes database was used for pathway analysis and ribosome was the most significantly enriched pathway term.


Ruminants ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 147-177
Author(s):  
D. Claire Wathes ◽  
Frank Becker ◽  
Laura Buggiotti ◽  
Mark A. Crowe ◽  
Conrad Ferris ◽  
...  

Peripartum dairy cows commonly experience negative energy balance (EB) and immunosuppression together with high incidences of infectious and metabolic disease. This study investigated mechanisms linking EB status with immune defense in early lactation. Data were collected from multiparous Holstein cows from six herds and leukocyte transcriptomes were analyzed using RNA sequencing. Global gene expression was related to circulating IGF-1 (as a biomarker for EB) by subdividing animals into three groups, defined as IGF-1 LOW (<35 ng/mL, n = 35), MODERATE (35–100 ng/mL, n = 92) or HIGH (>100 ng/mL, n = 43) at 14 ± 4 days in milk (DIM). Differentially expressed genes between groups were identified using CLC Genomics Workbench V21, followed by cluster and KEGG pathway analysis, focusing on the comparison between LOW and HIGH IGF-1 cows. LOW cows were older and had significantly lower dry matter intakes and EB values, whereas HIGH cows produced more milk. During the first 35 DIM, 63% of LOW cows had more than one health problem vs. 26% HIGH cows, including more with clinical mastitis and uterine infections. Gene expression analysis indicated that leukocytes in LOW cows switched energy metabolism from oxidative phosphorylation to aerobic glycolysis (PGM, LDH, and PDK4). Many antimicrobial peptides were up-regulated in LOW cows (e.g., PTX3, DMBT1, S100A8, and S100A9) together with genes associated with inflammation, platelet activation and the complement cascade. HIGH cows had greater expression of genes regulating T and B cell function and the cytoskeleton. Overall, results suggested an ongoing cycle of poor EB and higher infection rates in LOW IGF-1 cows which was reflected in altered leukocyte functionality and reduced milk production.


Sign in / Sign up

Export Citation Format

Share Document