Stability of inviscid shear flow over a flexible boundary

2001 ◽  
Vol 434 ◽  
pp. 371-378 ◽  
Author(s):  
JOHN MILES

The stability of an inviscid flow that comprises a thin shear layer and a uniform outer flow over a flexible boundary is investigated. It is shown that the flow is temporally unstable for all wavenumbers. This instability is either Kelvin–Helmholtz-like or induced by the phase shift across the critical layer. The threshold of absolute instability is determined in the form F = F∗(1 + Cεn) for ε [Lt ] 1, where F (a Froude number) and ε are, respectively, dimensionless measures of the flow speed and the shear-layer thickness, F∗ is the limiting value of F for a uniform flow, C < 0 and n = 1 in the absence (as for a broken-line velocity profile) of a phase shift across the critical layer, and C > 0 and n = 2/3 in the presence of such a phase shift. Explicit results are determined for an elastic plate (and, in an Appendix, for a membrane) with a broken-line, parabolic, or Blasius boundary-layer profile. The predicted threshold for the broken-line profile agrees with Lingwood & Peake's (1999) result for ε [Lt ] 1, but that for the Blasius profile contradicts their conclusion that the threshold for ε ↓ 0 is a ‘singular and unattainable limit’.

2010 ◽  
Vol 668 ◽  
pp. 384-411 ◽  
Author(s):  
M. R. TURNER ◽  
J. J. HEALEY ◽  
S. S. SAZHIN ◽  
R. PIAZZESI

This study uses spatio-temporal stability analysis to investigate the convective and absolute instability properties of a steady unconfined planar liquid jet. The approach uses a piecewise linear velocity profile with a finite-thickness shear layer at the edge of the jet. This study investigates how properties such as the thickness of the shear layer and the value of the fluid velocity at the interface within the shear layer affect the stability properties of the jet. It is found that the presence of a finite-thickness shear layer can lead to an absolute instability for a range of density ratios, not seen when a simpler plug flow velocity profile is considered. It is also found that the inclusion of surface tension has a stabilizing effect on the convective instability but a destabilizing effect on the absolute instability. The stability results are used to obtain estimates for the breakup length of a planar liquid jet as the jet velocity varies. It is found that reducing the shear layer thickness within the jet causes the breakup length to decrease, while increasing the fluid velocity at the fluid interface within the shear layer causes the breakup length to increase. Combining these two effects into a profile, which evolves realistically with velocity, gives results in which the breakup length increases for small velocities and decreases for larger velocities. This behaviour agrees qualitatively with existing experiments on the breakup length of axisymmetric jets.


A theoretical study is made of the nonlinear development of a slowly modulated wavetrain of the symmetric neutral mode of a tanhy shear layer. The shear layer Reynolds number is assumed to be large and the flow in the critical layer is taken to be both nonlinear and viscous. The complex wave amplitude A is shown to satisfy a nonlinear evolution equation, in which the nonlinearity takes an unusual form, depending on a realvalued function O of A, representing the phase shift in the stream function, or jump in streamwise fluctuating velocity, across the critical layer. The function f) is determined by a study of the critical layer structure, and surprisingly it is found to be identical with Haberman’s phase shift function for a critical layer away from a point of inflexion of the basic profile. However, the structure of the critical layer depends on the rate of change of A as well as on A itself, and this is essential to the form of the evolution equation. Some solutions of the evolution equation, illustrating both temporal and spatial variation of A , are computed. In the particular case of spatially varying waves, the growth rate reaches a maximum after which, at large distances, it gradually decreases to zero and the wave amplitude only grows algebraically as the f power of the distance.


2016 ◽  
Vol 26 (8) ◽  
pp. 815-826 ◽  
Author(s):  
Qing-fei Fu ◽  
Li-Jun Yang ◽  
Chao-Jie Mo

2016 ◽  
Vol 809 ◽  
pp. 873-894 ◽  
Author(s):  
John E. Sader ◽  
Cecilia Huertas-Cerdeira ◽  
Morteza Gharib

Cantilevered elastic sheets and rods immersed in a steady uniform flow are known to undergo instabilities that give rise to complex dynamics, including limit cycle behaviour and chaotic motion. Recent work has examined their stability in an inverted configuration where the flow impinges on the free end of the cantilever with its clamped edge downstream: this is commonly referred to as an ‘inverted flag’. Theory has thus far accurately captured the stability of wide inverted flags only, i.e. where the dimension of the clamped edge exceeds the cantilever length; the latter is aligned in the flow direction. Here, we theoretically examine the stability of slender inverted flags and rods under steady uniform flow. In contrast to wide inverted flags, we show that slender inverted flags are never globally unstable. Instead, they exhibit bifurcation from a state that is globally stable to multiple equilibria of varying stability, as flow speed increases. This theory is compared with new and existing measurements on slender inverted flags and rods, where excellent agreement is observed. The findings of this study have significant implications to investigations of biological phenomena such as the motion of leaves and hairs, which can naturally exhibit a slender geometry with an inverted configuration.


2020 ◽  
Vol 65 (1) ◽  
pp. 1-19
Author(s):  
Djamel Rezgui ◽  
Mark H. Lowenberg

Despite current research advances in aircraft dynamics and increased interest in the slowed rotor concept for high-speed compound helicopters, the stability of autogyro rotors remains partially understood, particularly at lightly loaded conditions and high advance ratios. In autorotation, the periodic behavior of a rotor blade is a complex nonlinear phenomenon, further complicated by the fact that the rotor speed is not held constant. The aim of the analysis presented in this article is to investigate the underlying mechanisms that can lead to rotation-flap blade instability at high advance ratios for a teetering autorotating rotor. The stability analysis was conducted via wind tunnel tests of a scaled autogyro model combined with numerical continuation and bifurcation analysis. The investigation assessed the effect of varying the flow speed, blade pitch angle, and rotor shaft tilt relative to the flow on the rotor performance and blade stability. The results revealed that rotor instability in autorotation is associated with the existence of fold bifurcations, which bound the control-input and design parameter space within which the rotor can autorotate. This instability occurs at a lightly loaded condition and at advance ratios close to 1 for the scaled model. Finally, it was also revealed that the rotor inability to autorotate was driven by blade stall.


1999 ◽  
Vol 66 (1) ◽  
pp. 197-203 ◽  
Author(s):  
P. J. Schall ◽  
J. P. McHugh

The linear stability of two-layer flow over an infinite elastic substraw is considered. The problem is motivated by coating flow in a printing press. The flow is assumed to be inviscid and irrotational. Surface tension between the fluid layers is included, but gravity is neglected. The results show two unstable modes: one mode associated with the interface between the elastic layer and the fluid (mode 1), and the other concentrated on the interface between the two fluids (mode 2). The behavior of the unstable modes is examined while varying the elastic parameters, and it is found that mode 1 can be made stable, but mode 2 remains unstable at small wavenumber, similar to the classic Kelvin—Helmholtz mode.


1967 ◽  
Vol 27 (4) ◽  
pp. 657-689 ◽  
Author(s):  
R. E. Kelly

In experiments concerning the instability of free shear layers, oscillations have been observed in the downstream flow which have a frequency exactly half that of the dominant oscillation closer to the origin of the layer. The present analysis indicates that the phenomenon is due to a secondary instability associated with the nearly periodic flow which arises from the finite-amplitude growth of the fundamental disturbance.At first, however, the stability of inviscid shear flows, consisting of a non-zero mean component, together with a component periodic in the direction of flow and with time, is investigated fairly generally. It is found that the periodic component can serve as a means by which waves with twice the wavelength of the periodic component can be reinforced. The dependence of the growth rate of the subharmonic wave upon the amplitude of the periodic component is found for the case when the mean flow profile is of the hyperbolic-tangent type. In order that the subharmonic growth rate may exceed that of the most unstable disturbance associated with the mean flow, the amplitude of the streamwise component of the periodic flow is required to be about 12 % of the mean velocity difference across the shear layer. This represents order-of-magnitude agreement with experiment.Other possibilities of interaction between disturbances and the periodic flow are discussed, and the concluding section contains a discussion of the interactions on the basis of the energy equation.


1972 ◽  
Vol 52 (3) ◽  
pp. 499-528 ◽  
Author(s):  
R. S. Scotti ◽  
G. M. Corcos

A statically stable stratified free shear layer was formed within the test section of a wind tunnel by merging two uniform streams of air after uniformly heating the top stream. The two streams were accelerated side by side in a contraction section. The resulting sheared thermocline thickened gradually as a result of molecular diffusion and was characterized by nearly self-similar temperature (odd), velocity (odd) and Richardson number (even) profiles. The minimum Richardson numberJ0could be adjusted over the range 0·07 ≥J0≥ 0·76; the Reynolds number Re varied between 30 and 70. Small periodic disturbances were introduced upstream of the test section by a fine wire oscillating in the thermocline. The wire generated a narrow horizontal beam of internal waves, which propagated downstream and remained confined within the thermocline. The growth or decay of these waves was observed in the test section. The results confirm the existence of a critical Richardson number the value of which is in plausible agreement with theoretical predictions (J0≅ 0·22 for the Reynolds number of the experiment). The growth rate is a function of the wavenumber and is somewhat different from that computed for the same Reynolds and Richardson numbers, but the calculation assumed velocity and density profiles which were also somewhat different.


The time-dependent structure of the wall region of separating, separated, and reattaching flows is considerably different than that of attached turbulent boundary layers. Large-scale structures, whose frequency of passage scales on the freestream velocity and shear layer thickness, produce large Reynolds shearing stresses and most of the turbulence kinetic energy in the outer region of the shear layer and transport it into the low velocity reversed flow next to the wall. This outer flow impresses a near wall streamwise streaky structure of spanwise spacing λ z simultaneously across the wall over a distance of the order of several λ z . The near wall structures produce negligible Reynolds shear stresses and turbulence kinetic energy.


Sign in / Sign up

Export Citation Format

Share Document