A compressible flow model for the air-rotor–stator dynamics of a high-speed, squeeze-film thrust bearing

2010 ◽  
Vol 655 ◽  
pp. 446-471 ◽  
Author(s):  
J. E. GARRATT ◽  
K. A. CLIFFE ◽  
S. HIBBERD ◽  
H. POWER

A compressible air-flow model is introduced for the thin film dynamics of a highly rotating squeeze-film thrust bearing. The lubrication approximation to the Navier–Stokes equations for compressible flow leads to a modified Reynolds equation incorporating additional rotation effects. To investigate the dynamics of the system, the axial position of the bearing stator is prescribed by a finite-amplitude periodic forcing. The dynamics of the squeeze-film are modelled in the uncoupled configuration where the axial position of the rotor is fixed. The coupled squeeze-film bearing dynamics are investigated when the axial position of the rotor is modelled as a spring-mass-damper system that responds to the film dynamics. Initially the uncoupled squeeze-film dynamics are considered at low operating speeds with the classical Reynolds equation for compressible flow. The limited value of the linearized small-amplitude results is identified. Analytical results indicate that finite-amplitude forcing needs to be considered to gain a complete understanding of the dynamics. Using a Fourier spectral collocation numerical scheme, the periodic bearing force is investigated as a nonlinear function of the frequency and amplitude of the stator forcing. High-speed bearing operation is modelled using the modified Reynolds equation. A steady-state analysis is used to identify the effect of rotation and the rotor support properties in the coupled air-flow–structure model. The unsteady coupled dynamics are computed numerically to determine how the rotor support structures and the periodic stator forcing influence the system dynamics. The potential for resonant rotor behaviour is identified through asymptotic and Fourier analysis of the rotor motion for small-amplitude, low-frequency oscillations in the stator position for key values of the rotor stiffness. Through the use of arclength continuation, the existence of resonant behaviour is identified numerically for a range of operating speeds and forcing frequencies. Changes in the minimum rotor–stator clearance are presented as a function of the rotor stiffness to demonstrate the appearance of resonance.

2011 ◽  
Vol 308-310 ◽  
pp. 1333-1336 ◽  
Author(s):  
Li Jun Qiu ◽  
Jia Yang ◽  
Su Ying Xu

Turbocharger turbine shaft thrust bearing is the role of high-speed rotating turbine to withstand the axial force generated by the turbine shaft and a part of the axial position. Fixed on the intermediate thrust bearing on the two sides and both sides of the ring, respectively, relative sliding. Sliding contact surface produces a condition of dynamic pressure oil film structure and shape of the oil wedge. Bearing the sides of the structural design of the oil wedge slot and forming a design to solve the main content. Bearing thrust bearing stiffness and rotation in the process of stress state and the smooth line is to improve the bearing life. Rotating turbine shaft to ensure the accuracy of key factors. Method of lubricating oil to the oil and oil Xie in the shape and precision bearings to ensure the prerequisite conditions and service life.


2013 ◽  
Vol 365-366 ◽  
pp. 304-308
Author(s):  
Lei Wang

An analysis is conducted and solutions are provided for the dynamic performance of high speed hybrid thrust bearing. By adopting bulk flow theory, the turbulent Reynolds equation is solved numerically with the different orifice diameter and supply pressure. The results show that increasing supply pressure can significantly improve the bearing stiffness and damping, while the orifice diameters make a different effect on the bearing stiffness and damping.


Author(s):  
L. Moraru ◽  
T. G. Keith ◽  
F. Dimofte ◽  
S. Cioc ◽  
N. Ene ◽  
...  

Squeeze film dampers (SFD) are devices utilized to control the shafts of high-speed rotating machinery. A dual squeeze film damper (DSFD) consists of two squeeze film bearings that are separated by a sleeve, which is released when the rotor experiences abnormal operating conditions. In this part of our study of DSFD we analyze the case when both the inner and the outer oil films are active. We present computed and measured unbalance responses of a shaft supported in DSFD. The oil forces which are utilized in the calculation of the unbalance response are obtained from numerical solutions of the Reynolds equation. A finite-difference algorithm is utilized for solving the pressure equation within the calculation of the dynamic response of the shaft.


1991 ◽  
Vol 113 (3) ◽  
pp. 633-638 ◽  
Author(s):  
A. K. Tieu

In this paper results from experimental studies and computer simulation of hydro-dynamic tilting thrust bearings are presented. The bearing performance in terms of outlet film thickness, friction coefficient, and bearing temperature was measured in a high speed thrust bearing test rig. The numerical simulation involves the solution of the generalized Reynolds equation and the energy equation, which considers thermal effects on the oil viscosity and the squeezing of the oil film.


1978 ◽  
Vol 100 (1) ◽  
pp. 139-146 ◽  
Author(s):  
R. A. Marmol ◽  
J. M. Vance

A mathematical model for squeeze film dampers is developed, and the solution results are compared with data from four different test rigs. A special feature of the analysis is the treatment of several different types of end seals and inlets, with inlet feedback included. A finite difference method is used to solve the Reynolds equation, with a banded matrix inversion routine. The test data are taken from a new high-speed free-rotor rig, and from three previously tested controlled-orbit rigs.


2014 ◽  
Vol 19 (4) ◽  
pp. 809-822
Author(s):  
A. Walicka ◽  
E. Walicki ◽  
P. Jurczak ◽  
J. Falicki

Abstract In the paper the influence of bearing surfaces roughness on the pressure distribution and load-carrying capacity of a thrust bearing is discussed. The equations of motion of an Ellis pseudo-plastic fluid are used to derive the Reynolds equation. After general considerations on the flow in a bearing clearance and using the Christensen theory of hydrodynamic rough lubrication the modified Reynolds equation is obtained. The analytical solutions of this equation for the cases of a squeeze film bearing and an externally pressurized bearing are presented. As a result one obtains the formulae expressing pressure distribution and load-carrying capacity. A thrust radial bearing is considered as a numerical example.


2017 ◽  
Vol 22 (2) ◽  
pp. 465-473
Author(s):  
A. Walicka ◽  
E. Walicki

AbstractBased upon a Gecim-Winer fluid flow model, a curvilinear squeeze film bearing is considered. The equations of motion are given in a specific coordinates system. After general considerations on the Gecim-Winer fluid flow these equations are used to derive the Reynolds equation. The solution of this equation is obtained by a method of successive approximation. As a result one obtains formulae expressing the pressure distribution and load-carrying capacity. The numerical examples of the Gecim-Winer fluid flow in gaps of two simple bearings: radial and spherical are presented.


2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Ren Liu ◽  
Xiao-Li Wang ◽  
Xiao-Qing Zhang

The effects of gas-rarefaction on dynamic characteristics of micro spiral-grooved-thrust-bearing are studied. The Reynolds equation is modified by the first order slip model, and the corresponding perturbation equations are then obtained on the basis of the linear small perturbation method. In the converted spiral-curve-coordinates system, the finite-volume-method (FVM) is employed to discrete the surface domain of micro bearing. The results show, compared with the continuum-flow model, that under the slip-flow regime, the decrease in the pressure and stiffness become obvious with the increasing of the compressibility number. Moreover, with the decrease of the relative gas-film-thickness, the deviations of dynamic coefficients between slip-flow-model and continuum-flow-model are increasing.


2016 ◽  
Vol 21 (4) ◽  
pp. 967-977
Author(s):  
A. Walicka ◽  
E. Walicki

Abstract Based upon a Prandtl fluid flow model, a curvilinear squeeze film bearing is considered. The equations of motion are given in a specific coordinate system. After general considerations on the Prandtl fluid flow these equations are used to derive the Reynolds equation. The solution of this equation is obtained by a method of successive approximation. As a result one obtains formulae expressing the pressure distribution and load-carrying capacity. The numerical examples of the Prandtl fluid flow in gaps of two simple bearings are presented.


2020 ◽  
Vol 21 (6) ◽  
pp. 619
Author(s):  
Kostandin Gjika ◽  
Antoine Costeux ◽  
Gerry LaRue ◽  
John Wilson

Today's modern internal combustion engines are increasingly focused on downsizing, high fuel efficiency and low emissions, which requires appropriate design and technology of turbocharger bearing systems. Automotive turbochargers operate faster and with strong engine excitation; vibration management is becoming a challenge and manufacturers are increasingly focusing on the design of low vibration and high-performance balancing technology. This paper discusses the synchronous vibration management of the ball bearing cartridge turbocharger on high-speed balancer and it is a continuation of papers [1–3]. In a first step, the synchronous rotordynamics behavior is identified. A prediction code is developed to calculate the static and dynamic performance of “ball bearing cartridge-squeeze film damper”. The dynamic behavior of balls is modeled by a spring with stiffness calculated from Tedric Harris formulas and the damping is considered null. The squeeze film damper model is derived from the Osborne Reynolds equation for incompressible and synchronous fluid loading; the stiffness and damping coefficients are calculated assuming that the bearing is infinitely short, and the oil film pressure is modeled as a cavitated π film model. The stiffness and damping coefficients are integrated on a rotordynamics code and the bearing loads are calculated by converging with the bearing eccentricity ratio. In a second step, a finite element structural dynamics model is built for the system “turbocharger housing-high speed balancer fixture” and validated by experimental frequency response functions. In the last step, the rotating dynamic bearing loads on the squeeze film damper are coupled with transfer functions and the vibration on the housings is predicted. The vibration response under single and multi-plane unbalances correlates very well with test data from turbocharger unbalance masters. The prediction model allows a thorough understanding of ball bearing turbocharger vibration on a high speed balancer, thus optimizing the dynamic behavior of the “turbocharger-high speed balancer” structural system for better rotordynamics performance identification and selection of the appropriate balancing process at the development stage of the turbocharger.


Sign in / Sign up

Export Citation Format

Share Document