Nonlinear evolution of waves on a vertically falling film

1993 ◽  
Vol 250 ◽  
pp. 433-480 ◽  
Author(s):  
H.-C. Chang ◽  
E. A. Demekhin ◽  
D. I. Kopelevich

Wave formation on a falling film is an intriguing hydrodynamic phenomenon involving transitions among a rich variety of spatial and temporal structures. Immediately beyond an inception region, short, near-sinusoidal capillary waves are observed. Further downstream, long, near-solitary waves with large tear-drop humps preceded by short, front-running capillary waves appear. Both kinds of waves evolve slowly downstream such that over about ten wavelengths, they resemble stationary waves which propagate at constant speeds and shapes. We exploit this quasi-steady property here to study wave evolution and selection on a vertically falling film. All finite-amplitude stationary waves with the same average thickness as the Nusselt flat film are constructed numerically from a boundary-layer approximation of the equations of motion. As is consistent with earlier near-critical analyses, two travelling wave families are found, each parameterized by the wavelength or the speed. One family γ1travels slower than infinitesimally small waves of the same wavelength while the other family γ2and its hybrids travel faster. Stability analyses of these waves involving three-dimensional disturbances of arbitrary wavelength indicate that there exists a unique nearly sinusoidal wave on the slow family γ1with wavenumber αs(or α2) that has the lowest growth rate. This wave is slightly shorter than the fastest growing linear mode with wavenumber αmand approaches the wave on γ1with the highest flow rate at low Reynolds numbers. On the fast γ2family, however, multiple bands of near-solitary waves bounded below by αfare found to be stable to two-dimensional disturbances. This multiplicity of stable bands can be interpreted as a result of favourable interaction among solitary-wave-like coherent structures to form a periodic train. (All waves are unstable to three-dimensional disturbances with small growth rates.) The suggested selection mechanism is consistent with literature data and our numerical experiments that indicate waves slow down immediately beyond inception as they approach the short capillary wave with wavenumber α2of the slow γ1family. They then approach the long stable waves on the γ2family further downstream and hence accelerate and develop into the unique solitary wave shapes, before they succumb to the slowly evolving transverse disturbances.

2019 ◽  
Vol 871 ◽  
pp. 1028-1043
Author(s):  
M. Abid ◽  
C. Kharif ◽  
H.-C. Hsu ◽  
Y.-Y. Chen

The bifurcation of two-dimensional gravity–capillary waves into solitary waves when the phase velocity and group velocity are nearly equal is investigated in the presence of constant vorticity. We found that gravity–capillary solitary waves with decaying oscillatory tails exist in deep water in the presence of vorticity. Furthermore we found that the presence of vorticity influences strongly (i) the solitary wave properties and (ii) the growth rate of unstable transverse perturbations. The growth rate and bandwidth instability are given numerically and analytically as a function of the vorticity.


2018 ◽  
Vol 33 (25) ◽  
pp. 1850145 ◽  
Author(s):  
Abdullah ◽  
Aly R. Seadawy ◽  
Jun Wang

Propagation of three-dimensional nonlinear solitary waves in a magnetized electron–positron plasma is analyzed. Modified extended mapping method is further modified and applied to three-dimensional nonlinear modified Zakharov–Kuznetsov equation to find traveling solitary wave solutions. As a result, electrostatic field potential, electric field, magnetic field and quantum statistical pressure are obtained with the aid of Mathematica. The new exact solitary wave solutions are obtained in different forms such as periodic, kink and anti-kink, dark soliton, bright soliton, bright and dark solitary waves, etc. The results are expressed in the forms of trigonometric, hyperbolic, rational and exponential functions. The electrostatic field potential and electric and magnetic fields are shown graphically. The soliton stability of these solitary wave solutions is analyzed. These results demonstrate the efficiency and precision of the method that can be applied to many other mathematical physical problems.


2017 ◽  
Vol 31 (10) ◽  
pp. 1742001 ◽  
Author(s):  
Yuli Starosvetsky ◽  
K. R. Jayaprakash ◽  
Alexander F. Vakakis

We provide a review of propagating traveling waves and solitary pulses in uncompressed one-dimensional ([Formula: see text]) ordered granular media. The first such solution in homogeneous granular media was discovered by Nesterenko in the form of a single-hump solitary pulse with energy-dependent profile and velocity. Considering directly the discrete, strongly nonlinear governing equations of motion of these media (i.e., without resorting to continuum approximation or homogenization), we show the existence of countably infinite families of stable multi-hump propagating traveling waves with arbitrary wavelengths. A semi-analytical approach is used to study the dependence of these waves on spatial periodicity (wavenumber) and energy, and to show that in a certain asymptotic limit, these families converge to the single-hump Nesterenko solitary wave. Then the study is extended in dimer granular chains composed of alternating “heavy” and “light” beads. For a set of specific mass ratios between the light and heavy beads, we show the existence of multi-hump solitary waves that propagate faster than the Nesterenko solitary wave in the corresponding homogeneous granular chain composed of only heavy beads. The existence of these waves has interesting implications in energy transmission in ordered granular chains.


1994 ◽  
Vol 270 ◽  
pp. 251-276 ◽  
Author(s):  
H.-C. Chang ◽  
M. Cheng ◽  
E. A. Demekhin ◽  
D. I. Kopelevich

The primary instability of a falling film selectively amplifies two-dimensional noise down-stream over three-dimensional modes with transverse variation. If the initial three-dimensional noise is weak or if it has short wavelengths such that they are effectively damped by the capillary mechanism of the primary instability, our earlier study (Chang et al. 1993a) showed that the primary instability leads to a weakly nonlinear, nearly sinusoidal γ1 stationary wave which then undergoes a secondary transition to a strongly nonlinear γ2 wave with a solitary wave structure. We show here that the primary transition remains in the presence of significant three-dimensional noise but the secondary transition can be replaced by a selective excitation of oblique triad waves which can even include stable primary disturbances. The resulting secondary checkerboard pattern is associated with a subharmonic mode in the streamwise direction. If the initial transverse noise level is low, a secondary transition to a two-dimensional γ2 solitary wave is followed by a tertiary ‘phase instability’ dominated by transverse wave crest modulations.


1967 ◽  
Vol 28 (1) ◽  
pp. 65-84 ◽  
Author(s):  
T. Brooke Benjamin

The primary aim of the analysis presented herein is to consolidate the ideas of the ‘conjugate-flow’ theory, which proposes that vortex breakdown is fundamentally a transition from a uniform state of swirling flow to one featuring stationary waves of finite amplitude. The original flow is assumed to be supercritical (i.e. incapable of bearing infinitesimal stationary waves), and the mechanism of the transition is explained on the basis of physical principles that are well established in relation to the analogous supercritical-flow phenomenon of the hydraulic jump or bore. In previous presentations of the theory the existence of appropriately descriptive solutions to the full equations of motion has only been inferred from these general principles, but here the solutions are demonstrated explicitly by means of a perturbation analysis. This has basically much in common with the classical theory of solitary and cnoidal waves, which is known to explain well the essential properties of weak bores.In § 2 the basic equations of the problem are set out and the leading results of the original theoretical treatment are recalled. The new developments are mainly presented in § 3, where an analysis of finite-amplitude waves is completed by two different methods, each serving to illustrate points of interest. The effects of small energy losses and of small flow-force reductions (i.e. wave-resistance effects) are considered, and the analysis leads to a general classification of possible phenomena accompanying such changes of integral properties in either slightly supercritical or slightly subcritical vortex flows. The application to vortex breakdown remains the focus of attention, however, and § 3 includes a careful appraisal of some experimental observations on the phenomenon. In § 4 a summary is given of a variant on the previous methods which is required when the radial boundary of the flow is taken to infinity. The main analysis is developed without restriction to particular flow models, but in § 5 the results are applied to a specific example.


Author(s):  
Paul A. Milewski ◽  
Zhan Wang

When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity–capillary solitary waves are found to be of either elevation or depression type, tend to plane waves below a critical transverse period and tend to solitary lumps as the transverse period tends to infinity. The waves are found numerically in a Hamiltonian system for water waves simplified by a cubic truncation of the Dirichlet-to-Neumann operator. This approximation has been proved to be very accurate for both two- and three-dimensional computations of fully localized gravity–capillary solitary waves. The stability properties of these waves are then investigated via the time evolution of perturbed wave profiles.


2004 ◽  
Vol 126 (6) ◽  
pp. 1003-1013 ◽  
Author(s):  
Jesse D. Killion ◽  
Srinivas Garimella

Recent literature suggests that the droplets that form in horizontal-tube, falling-film absorbers play a major role in the absorption process. The performance of such absorbers is critical to the performance of many absorption heat pump systems. The simulation of droplets of aqueous Lithium Bromide pendant from horizontal tubes was performed by numerically solving the equations of motion on a fixed three-dimensional (3D) grid. The so-called volume of fluid method was used to handle the interface between the liquid and vapor phase. Results are compared with simplified axisymmetric models and with high speed video taken during flow visualization experiments. The results show that simplified axisymmetric models do not satisfactorily represent the evolution of the droplets under horizontal tubes, and that the 3D numerical model appears to accurately match the important characteristics of droplet formation, detachment, and impact observed in the experiments.


1997 ◽  
Vol 330 ◽  
pp. 215-232 ◽  
Author(s):  
T.-S. YANG ◽  
T. R. AKYLAS

Symme tric gravity–capillary solitary waves with decaying oscillatory tails are known to bifurcate from infinitesimal periodic waves at the minimum value of the phase speed where the group velocity is equal to the phase speed. In the small-amplitude limit, these solitary waves may be interpreted as envelope solitons with stationary crests and are described by the nonlinear Schrödinger (NLS) equation to leading order. In line with this interpretation, it would appear that one may also co nstruct asymmetric solitary waves by shifting the carrier oscillations relative to the envelope of a symmetric solitary wave. This possibility is examined here on the basis of the fifth-order Korteweg–de Vries (KdV) equation, a model for g ravity–capillary waves on water of finite depth when the Bond number is close to 1/3. Using techniques of exponential asymptotics beyond all orders of the NLS theory, it is shown that asymmetric solitary waves of the form suggested by the NLS theory in fact are not possible. On the other hand, an infinity of symmetric and asymmetric solitary-wave solution families comprising two or more NLS solitary wavepackets bifurcate at finite values of the amplitude parameter. The asymptotic results are consistent with numerical solutions of the fifth-order KdV equation. Moreover, the asymptotic theory suggests that such multi-packet gravity–capillary solitary waves also exist in the full water-wave problem near the minimum of t he phase speed.


1979 ◽  
Vol 46 (1) ◽  
pp. 132-138 ◽  
Author(s):  
J. W. Klahs ◽  
J. H. Ginsberg

The equations of motion governing the three-dimensional finite-amplitude response of a plate in arbitrary space motion are derived and shown to lead to dynamic coupling between the transverse and in-plane displacement. A general method of solution for such problems is demonstrated in an example involving a simply supported rectangular plate spinning about an axis parallel to an edge and nutating through a small angle. The method involves an asymptotic expansion using the derivative expansion version of the method of multiple time scales, in conjunction with the Galerkin method. A critical spin rate leading to the loss of stability in divergence is determined. Then, a numerical example of resonant excitation of one principal coordinate demonstrates that the nonlinear response resembling the one obtained from linear theory may lose stability in favor of a second response in which several principal coordinates are mutually excited. Consideration of the interaction between in-plane and transverse displacements is shown to be crucial to the prediction of this “unusual” response.


2017 ◽  
Vol 814 ◽  
Author(s):  
Naeem Masnadi ◽  
James H. Duncan

In this experimental study, we investigate the interaction of gravity–capillary solitary waves generated by two surface pressure sources moving side by side at constant speed. The nonlinear response of a water surface to a single source moving at a speed just below the minimum phase speed of linear gravity–capillary waves in deep water ($c_{min}\approx 23~\text{cm}~\text{s}^{-1}$) consists of periodic generation of pairs of three-dimensional solitary waves (or lumps) in a V-shaped pattern downstream of the source. In the reference frame of the laboratory, these unsteady lumps propagate in a direction oblique to the motion of the source. In the present experiments, the strengths of the two sources are adjusted to produce nearly identical responses and the free-surface deformations are visualized using photography-based techniques. The first lumps generated by the two sources move in intersecting directions that make a half-angle of approximately $15^{\circ }$ and collide in the centreplane between the sources. A steep depression is formed during the collision, but this depression quickly decreases in amplitude while radiating small-amplitude radial waves. After the collision, a quasi-stable pattern is formed with several rows of localized depressions that are qualitatively similar to lumps but exhibit periodic amplitude oscillations, similar to a breather. The shape of the wave pattern and the period of oscillations depend strongly on the distance between the sources.


Sign in / Sign up

Export Citation Format

Share Document