Simulation of turbulent flow over idealized water waves

2000 ◽  
Vol 404 ◽  
pp. 47-85 ◽  
Author(s):  
PETER P. SULLIVAN ◽  
JAMES C. McWILLIAMS ◽  
CHIN-HOH MOENG

Turbulent flow over idealized water waves with varying wave slope ak and wave age c/u∗ is investigated using direct numerical simulations at a bulk Reynolds number Re = 8000. In the present idealization, the shape of the water wave and the associated orbital velocities are prescribed and do not evolve dynamically under the action of the wind. The results show that the imposed waves significantly influence the mean flow, vertical momentum fluxes, velocity variances, pressure, and form stress (drag). Compared to a stationary wave, slow (fast) moving waves increase (decrease) the form stress. At small c/u∗, waves act similarly to increasing surface roughness zo resulting in mean vertical velocity profiles with shorter buffer and longer logarithmic regions. With increasing wave age, zo decreases so that the wavy lower surface is nearly as smooth as a flat lower boundary. Vertical profiles of turbulence statistics show that the wave effects depend on wave age and wave slope but are confined to a region kz < 1 (where k is the wavenumber of the surface undulation and z is the vertical coordinate). The turbulent momentum flux can be altered by as much as 40% by the waves. A region of closed streamlines (or cat's-eye pattern) centred about the critical layer height was found to be dynamically important at low to moderate values of c/u∗. The wave-correlated velocity and flux fields are strongly dependent on the variation of the critical layer height and to a lesser extent the surface orbital velocities. Above the critical layer zcr the positions of the maximum and minimum wave-correlated vertical velocity ww occur upwind and downwind of the peak in zcr, like a stationary surface. The wave-correlated flux uwww is positive (negative) above (below) the critical layer height.

2018 ◽  
Vol 48 (1) ◽  
pp. 3-27 ◽  
Author(s):  
Peter P. Sullivan ◽  
Michael L. Banner ◽  
Russel P. Morison ◽  
William L. Peirson

AbstractTurbulent flow over strongly forced steep steady and unsteady waves is simulated using large-eddy simulation (LES) with time t and space x varying wave height h(x, t) imposed as a lower boundary condition. With steady waves, h(x, t) is based on measurements of incipient and active breaking waves collected in a wind-wave flume, while a numerical wave code is used to generate an unsteady evolving wave packet (group). Highly intermittent airflow separation is found in the simulations, and the results suggest separation near a wave crest occurs prior to the onset of wave breaking. The form (pressure) drag is most sensitive to the wave slope, and the form drag can contribute as much as 74% to the total stress. Wind and scalar profiles from the LES display log-linear variations above the wave surface; the LES wind profiles are in good agreement with the measurements. The momentum roughness increases as the water surface changes from wind ripples to incipient breaking to active breaking. However, the scalar roughness decreases as the wave surface becomes rougher. This highlights major differences in momentum and scalar transport over a rough wavy surface. For a rapidly evolving, strongly forced wave group, the form drag is highly correlated with the wave slope, and intermittent separation is found early in the packet evolution when the local wave slope −∂h/∂x(x, t) ≥ 0.22. The packet root-mean-square wave slope is 0.084, but the form drag fraction is 2.4 times larger than a comparably forced steady wave. Thus, a passing wave group can induce unsteadiness in the wind stress.


2008 ◽  
Vol 130 (1) ◽  
Author(s):  
M. K. Shah ◽  
M. F. Tachie

An experimental investigation of turbulent flow subjected to variable adverse and favorable pressure gradients in two-dimensional asymmetric channels is reported. The floors of the diverging and converging channels were flat while the roofs of the channels were curved. Adverse pressure gradient flows at Reh=27,050 and 12,450 and favorable pressure gradient flow at Reh=19,280 were studied. A particle image velocimetry was used to conduct detailed measurements at several planes upstream, within the variable section and within the downstream sections. The boundary layer parameters were obtained in the upper and lower boundary layers to study the effects of pressure gradients on the development of the mean flow on the floor and roof of the channels. The profiles of the mean velocities, turbulence intensities, Reynolds shear stress, mixing length, eddy viscosity, and turbulence production were also obtained to document the salient features of pressure gradient turbulent flows in asymmetric converging and diverging channels.


Author(s):  
Wang Kee In ◽  
Dong Seok Oh ◽  
Tae Hyun Chun

The numerical predictions using the standard and RNG k–ε eddy viscosity models, differential stress model (DSM) and algebraic stress model (ASM) are examined for the turbulent flow in a nuclear fuel bundle with the mixing vane. The hybrid (first-order) and curvature-compensated convective transport (CCCT) schemes were used to examine the effect of the differencing scheme for the convection term. The CCCT scheme was found to more accurately predict the characteristics of turbulent flow in the fuel bundle. There is a negligible difference in the prediction performance between the standard and RNG k-ε models. The calculation using ASM failed in meeting the convergence criteria. DSM appeared to more accurately predict the mean flow velocities as well as the turbulence parameters.


2008 ◽  
Vol 615 ◽  
pp. 371-399 ◽  
Author(s):  
S. DONG

We report three-dimensional direct numerical simulations of the turbulent flow between counter-rotating concentric cylinders with a radius ratio 0.5. The inner- and outer-cylinder Reynolds numbers have the same magnitude, which ranges from 500 to 4000 in the simulations. We show that with the increase of Reynolds number, the prevailing structures in the flow are azimuthal vortices with scales much smaller than the cylinder gap. At high Reynolds numbers, while the instantaneous small-scale vortices permeate the entire domain, the large-scale Taylor vortex motions manifested by the time-averaged field do not penetrate a layer of fluid near the outer cylinder. Comparisons between the standard Taylor–Couette system (rotating inner cylinder, fixed outer cylinder) and the counter-rotating system demonstrate the profound effects of the Coriolis force on the mean flow and other statistical quantities. The dynamical and statistical features of the flow have been investigated in detail.


Author(s):  
Guohu Luo ◽  
Shengde Wang ◽  
Hong Shen ◽  
Zhenqiang Yao

The present work numerically considered the turbulent flow in a semi-closed rotor-stator cavity with a superimposed throughflow based on Reynolds Stress Model (RSM). The mean flow structure and turbulent field in the semi-closed cavity (SC) were identified by comparison with the flow in open cavity (OC) and closed cavity (CC). Then the effects of rotation Reynolds number, ranging from 1 × 106 to 4 × 106, on the flow in SC were investigated. The superimposed flow noticeably decreases the tangential velocity, resulting that the pressure difference between central hub and periphery in SC is greater than the OC but less than the CC. The flow in SC belongs to Stewartson type in the region between inlet and outlet, but to Bachelor type between outlet and periphery. Around the outlets, the flow is greatly affected, especially for turbulent field, where the turbulence intensities maintain at higher levels outside the two boundary layers. With the increase of Reynolds number, the tangential velocity goes up, resulted the attenuation of jet impinging effects, the shrinking of affected zones by outlets and the enlargement of pressure difference. Moreover, with the Bödewadt layer moving toward the central hub, the turbulence intensities increase inside two boundary layers but decrease outside them. Consequently, the flow is transited to Stewartson and then Batchelor type.


2019 ◽  
Vol 875 ◽  
pp. 1145-1174 ◽  
Author(s):  
T. Congy ◽  
G. A. El ◽  
M. A. Hoefer

A new type of wave–mean flow interaction is identified and studied in which a small-amplitude, linear, dispersive modulated wave propagates through an evolving, nonlinear, large-scale fluid state such as an expansion (rarefaction) wave or a dispersive shock wave (undular bore). The Korteweg–de Vries (KdV) equation is considered as a prototypical example of dynamic wavepacket–mean flow interaction. Modulation equations are derived for the coupling between linear wave modulations and a nonlinear mean flow. These equations admit a particular class of solutions that describe the transmission or trapping of a linear wavepacket by an unsteady hydrodynamic state. Two adiabatic invariants of motion are identified that determine the transmission, trapping conditions and show that wavepackets incident upon smooth expansion waves or compressive, rapidly oscillating dispersive shock waves exhibit so-called hydrodynamic reciprocity recently described in Maiden et al. (Phys. Rev. Lett., vol. 120, 2018, 144101) in the context of hydrodynamic soliton tunnelling. The modulation theory results are in excellent agreement with direct numerical simulations of full KdV dynamics. The integrability of the KdV equation is not invoked so these results can be extended to other nonlinear dispersive fluid mechanic models.


2016 ◽  
Vol 796 ◽  
pp. 257-284 ◽  
Author(s):  
Christian J. Kähler ◽  
Sven Scharnowski ◽  
Christian Cierpka

The understanding and accurate prediction of turbulent flow separation on smooth surfaces is still a challenging task because the separation and the reattachment locations are not fixed in space and time. Consequently, reliable experimental data are essential for the validation of numerical flow simulations and the characterization and analysis of the complex flow physics. However, the uncertainty of the existing near-wall flow measurements make a precise analysis of the near-wall flow features, such as separation/reattachment locations and other predicted near-wall flow features which are under debate, often impossible. Therefore, the periodic hill experiment at TU Munich (ERCOFTAC test case 81) was repeated using high resolution particle image velocimetry and particle tracking velocimetry. The results confirm the strong effect of the spatial resolution on the near-wall flow statistics. Furthermore, it is shown that statistically stable values of the turbulent flow variables can only be obtained for averaging times which are challenging to realize with highly resolved large eddy simulation and direct numerical simulation techniques. Additionally, the analysis implies that regions of correlated velocity fluctuations with rather uniform streamwise momentum exist in the flow. Their size in the mean flow direction can be larger than the hill spacing. The possible impact of the correlated turbulent motion on the wake region is discussed, as this interaction might be important for the understanding and control of the flow separation dynamics on smooth bodies.


2019 ◽  
Vol 80 (11) ◽  
pp. 2117-2130
Author(s):  
Ivan Matías Ragessi ◽  
Carlos Marcelo García ◽  
Santiago Márquez Damián ◽  
Cecilia Pozzi Piacenza ◽  
Mariano Ignacio Cantero

Abstract This paper presents a detailed characterization of turbulence in the incoming flow to the clarification component of a water treatment plant, ‘Los Molinos’ (Córdoba, Argentina). The main problems were related to the presence of turbulent flow patterns throughout the treatment, affecting the proper development of the physical processes required for water clarification. Namely: (a) a poor hydraulic design that could produce a non-homogeneous spatial distribution of the flow, recirculation zones and flow stagnation, and a non-uniform discharge distribution among the sedimentation units as a result of different cross-sectional dimensions of the transverse-channel, and (b) high turbulence intensity that affect the flocs' size as well as the efficiency of the settling tanks and filters. Firstly, a detailed in-situ experimental characterization of the turbulent flow was undertaken. An acoustic Doppler velocimeter (ADV) was used to characterize the flow turbulence, whereas for discharge measurements and mean flow velocity field an acoustic Doppler current profiler (ADCP) was employed. Secondly, a numerical model, based on the Reynolds-averaged Navier–Stokes (RANS) equations and the - turbulence closure model, was validated with the experimental data. Finally, based on the results, a diagnosis and recommendations were made for the optimization of the hydraulic design of the water treatment plant.


Sign in / Sign up

Export Citation Format

Share Document