scholarly journals The Mathematical Model of Ice Sheets and the Calculation of the Evolution of the Greenland Ice Sheet

1985 ◽  
Vol 31 (109) ◽  
pp. 281-292 ◽  
Author(s):  
S.S Grigoryan ◽  
S.A Buyanov ◽  
M.S Krass ◽  
P.A Shumskiy

AbstractAn evolutionary mathematical model of ice sheets is presented. The model takes into account the basic climatic and geophysical parameters, with temperature parameterization. Some numerical data derived from experiments on the Greenland ice sheet are received. At present the Greenland ice sheet is found to be in a state essentially different from a stationary one corresponding to modern climatic conditions.

1985 ◽  
Vol 31 (109) ◽  
pp. 281-292 ◽  
Author(s):  
S.S Grigoryan ◽  
S.A Buyanov ◽  
M.S Krass ◽  
P.A Shumskiy

AbstractAn evolutionary mathematical model of ice sheets is presented. The model takes into account the basic climatic and geophysical parameters, with temperature parameterization. Some numerical data derived from experiments on the Greenland ice sheet are received. At present the Greenland ice sheet is found to be in a state essentially different from a stationary one corresponding to modern climatic conditions.


1997 ◽  
Vol 24 ◽  
pp. 223-228 ◽  
Author(s):  
Adeline Fabre ◽  
Catherine Ritz ◽  
Gilles Ramstein

We use a three-dimensional thermomechanical ice-sheet model, previously tested on the Greenland ice sheet, to reconstruct Last Glacial Maximum (LGM) ice sheets. We compare the effects on the results of the ice-sheet model of three different accumulation parameterization schemes. In the first and second schemes, LGM precipitation is computed from the present precipitation, taking and not taking into account moisture transport. In the third scheme, LGM precipitation and surface temperatures are computed using outputs of an atmospheric global circulation model (AGCM), treated in anomaly mode.Results are compared to the last reconstruction of the Northern Hemisphere ice sheets (Peltier, 1994), computed using global rebound rates in a visco-elastic model of the Earth’s crust. The first two accumulation parameterizations do not give satisfactory reconstructions of the LGM ice sheets, since they are unable to compute realistic LGM climatic conditions. The third method gives very satisfactory results, which leads us to conclude that the best way to obtain realistic LGM climatic conditions is to use AGCM outputs.


1997 ◽  
Vol 24 ◽  
pp. 223-228 ◽  
Author(s):  
Adeline Fabre ◽  
Catherine Ritz ◽  
Gilles Ramstein

We use a three-dimensional thermomechanical ice-sheet model, previously tested on the Greenland ice sheet, to reconstruct Last Glacial Maximum (LGM) ice sheets. We compare the effects on the results of the ice-sheet model of three different accumulation parameterization schemes. In the first and second schemes, LGM precipitation is computed from the present precipitation, taking and not taking into account moisture transport. In the third scheme, LGM precipitation and surface temperatures are computed using outputs of an atmospheric global circulation model (AGCM), treated in anomaly mode. Results are compared to the last reconstruction of the Northern Hemisphere ice sheets (Peltier, 1994), computed using global rebound rates in a visco-elastic model of the Earth’s crust. The first two accumulation parameterizations do not give satisfactory reconstructions of the LGM ice sheets, since they are unable to compute realistic LGM climatic conditions. The third method gives very satisfactory results, which leads us to conclude that the best way to obtain realistic LGM climatic conditions is to use AGCM outputs.


Author(s):  
R. Zinko ◽  
P. Kazan ◽  
D. Khaustov ◽  
O. Bilyk

A small intelligence robot (SSR) is a special military intelligence means. It is used to obtain information about the enemy - the collection of intelligence, the search for targets and target indication, observation of the situation, etc. The use of a small intelligence robot is assumed in various natural and climatic conditions: in temperate terrain, on soils with low bearing capacity, at low temperatures, in the desert, on sandy and marshy soils, on rocky soils, in elevated temperature and dustiness of air, and also in conditions highlands In the article an overview of modern developments of remotely controlled robotic military complexes, principles of their construction and perspective directions of development in the armed forces are reviewed. The issues of robotization of existing weapons and military equipment are considered. Every sample of a SSR used in combat action must possess all combat characteristics at once in an optimal ratio between them, ensuring its maximum effectiveness. Ignoring any of the properties or enhancing one property at the expense of others will not enable the full realization of the small surveillance robot. It is reasonable to select the relevant properties at the design stage, using the possibilities of mathematical modeling. The set of tactical and technical characteristics of the SSR allowed forming this. Its characteristics determine the scope and possibilities of application. The mathematical model of the SSR motion is written in the Matlab Simulink environment. Recorded mathematical model of SSR motion, formed single test cycle and input data allowed to conduct computer simulation of motion in possible conditions of operation of small surveillance robot.The single trial cycle presented contains a set of individual sites and reproduces the testing test cycle of a real polygon. On the basis of the developed tactical and technical characteristics of the SSR, the experimental sample was made. An example of the use of SSR for the intelligence of the settlement and at keeping the node of barriers has been provided. The efficiency of performing intelligence units’ tasks and reducing the risk of human losses are shown.


2016 ◽  
Vol 12 (12) ◽  
pp. 2195-2213 ◽  
Author(s):  
Heiko Goelzer ◽  
Philippe Huybrechts ◽  
Marie-France Loutre ◽  
Thierry Fichefet

Abstract. As the most recent warm period in Earth's history with a sea-level stand higher than present, the Last Interglacial (LIG,  ∼  130 to 115 kyr BP) is often considered a prime example to study the impact of a warmer climate on the two polar ice sheets remaining today. Here we simulate the Last Interglacial climate, ice sheet, and sea-level evolution with the Earth system model of intermediate complexity LOVECLIM v.1.3, which includes dynamic and fully coupled components representing the atmosphere, the ocean and sea ice, the terrestrial biosphere, and the Greenland and Antarctic ice sheets. In this setup, sea-level evolution and climate–ice sheet interactions are modelled in a consistent framework.Surface mass balance change governed by changes in surface meltwater runoff is the dominant forcing for the Greenland ice sheet, which shows a peak sea-level contribution of 1.4 m at 123 kyr BP in the reference experiment. Our results indicate that ice sheet–climate feedbacks play an important role to amplify climate and sea-level changes in the Northern Hemisphere. The sensitivity of the Greenland ice sheet to surface temperature changes considerably increases when interactive albedo changes are considered. Southern Hemisphere polar and sub-polar ocean warming is limited throughout the Last Interglacial, and surface and sub-shelf melting exerts only a minor control on the Antarctic sea-level contribution with a peak of 4.4 m at 125 kyr BP. Retreat of the Antarctic ice sheet at the onset of the LIG is mainly forced by rising sea level and to a lesser extent by reduced ice shelf viscosity as the surface temperature increases. Global sea level shows a peak of 5.3 m at 124.5 kyr BP, which includes a minor contribution of 0.35 m from oceanic thermal expansion. Neither the individual contributions nor the total modelled sea-level stand show fast multi-millennial timescale variations as indicated by some reconstructions.


1989 ◽  
Vol 13 ◽  
pp. 12-15 ◽  
Author(s):  
Roger J. Braithwaite ◽  
Henrik Højmark Thomsen

Simulations of run-off from the Greenland ice sheet were made as part of a feasibility study for provision of hydroelectric power for Ilulissat/Jakobshavn, West Greenland. The aims were to see if the available short series of run-off measurements are typical of those under present climatic conditions, and to assess possible changes in run-off likely to be caused by gross changes in drainage pattern on the ice sheet. Specific run-off was calculated from climatological data, whilst run-off volumes were calculated by integrating specific run-off over the area of the ice sheet. There have been substantial year-to-year variations in run-off, but the 6 year measurement period is reasonably representative of present climatic conditions. Run-off could be reduced by 21% as a result of changes in hydraulic conditions on the ice sheet without this having a significant effect on the economy of the planned hydro-electric power station.


2018 ◽  
Author(s):  
Kalman Ziha

Abstract. Earth and environmental mechanisms and phenomena are often physically finite dynamical causal processes and need more precise mathematical elaboration. Therefore this article at the beginning resumes the decomposition of general infinite circular causal relations with linear feedbacks to primary causal effects and to interactions among boundless effects and causes. In the sequel it reveals the mathematical model of general finite cause-and-effect interaction with non-linear feedback induced by finiteness of causal processes with exhaustible causal capacities. The study also uncovers that the reverse application of the mathematical model makes it possible to discover and to estimate the unknown ultimate causal capacities from relevant information of supposedly finite causal processes beyond the instant of observation. The article at the end demonstrates that the environmental relations among global climate change and ice mass losses monitored recently on Greenland and Antarctica ice sheets are plausibly finite dynamical climate processes in interaction with cryosphere.


2015 ◽  
Vol 11 (3) ◽  
pp. 403-424 ◽  
Author(s):  
A. M. Dolan ◽  
S. J. Hunter ◽  
D. J. Hill ◽  
A. M. Haywood ◽  
S. J. Koenig ◽  
...  

Abstract. During an interval of the Late Pliocene, referred to here as the mid-Pliocene Warm Period (mPWP; 3.264 to 3.025 million years ago), global mean temperature was similar to that predicted for the end of this century, and atmospheric carbon dioxide concentrations were higher than pre-industrial levels. Sea level was also higher than today, implying a significant reduction in the extent of the ice sheets. Thus, the mPWP provides a natural laboratory in which to investigate the long-term response of the Earth's ice sheets and sea level in a warmer-than-present-day world. At present, our understanding of the Greenland ice sheet during the mPWP is generally based upon predictions using single climate and ice sheet models. Therefore, it is essential that the model dependency of these results is assessed. The Pliocene Model Intercomparison Project (PlioMIP) has brought together nine international modelling groups to simulate the warm climate of the Pliocene. Here we use the climatological fields derived from the results of the 15 PlioMIP climate models to force an offline ice sheet model. We show that mPWP ice sheet reconstructions are highly dependent upon the forcing climatology used, with Greenland reconstructions ranging from an ice-free state to a near-modern ice sheet. An analysis of the surface albedo variability between the climate models over Greenland offers insights into the drivers of inter-model differences. As we demonstrate that the climate model dependency of our results is high, we highlight the necessity of data-based constraints of ice extent in developing our understanding of the mPWP Greenland ice sheet.


2020 ◽  
Author(s):  
Andrew Shepherd ◽  

<p>In recent decades, the Antarctic and Greenland Ice Sheets have been major contributors to global sea-level rise and are expected to be so in the future. Although increases in glacier flow and surface melting have been driven by oceanic and atmospheric warming, the degree and trajectory of today’s imbalance remain uncertain. Here we compare and combine 26 individual satellite records of changes in polar ice sheet volume, flow and gravitational potential to produce a reconciled estimate of their mass balance. <strong>Since the early 1990’s, ice losses from Antarctica and Greenland have caused global sea-levels to rise by 18.4 millimetres, on average, and there has been a sixfold increase in the volume of ice loss over time. Of this total, 41 % (7.6 millimetres) originates from Antarctica and 59 % (10.8 millimetres) is from Greenland. In this presentation, we compare our reconciled estimates of Antarctic and Greenland ice sheet mass change to IPCC projection of sea level rise to assess the model skill in predicting changes in ice dynamics and surface mass balance.  </strong>Cumulative ice losses from both ice sheets have been close to the IPCC’s predicted rates for their high-end climate warming scenario, which forecast an additional 170 millimetres of global sea-level rise by 2100 when compared to their central estimate.</p>


2002 ◽  
Vol 48 (160) ◽  
pp. 70-80 ◽  
Author(s):  
Gerard H. Roe

AbstractThe interaction between ice sheets and the rest of the climate system at long time-scales is not well understood, and studies of the ice ages typically employ simplified parameterizations of the climate forcing on an ice sheet. It is important therefore to understand how an ice sheet responds to climate forcing, and whether the reduced approaches used in modeling studies are capable of providing robust and realistic answers. This work focuses on the accumulation distribution, and in particular considers what features of the accumulation pattern are necessary to model the steady-state response of an ice sheet. We examine the response of a model of the Greenland ice sheet to a variety of accumulation distributions, both observational datasets and simplified parameterizations. The predicted shape of the ice sheet is found to be quite insensitive to changes in the accumulation. The model only differs significantly from the observed ice sheet for a spatially uniform accumulation rate, and the most important factor for the successful simulation of the ice sheet’s shape is that the accumulation decreases with height according to the ability of the atmosphere to hold moisture. However, the internal ice dynamics strongly reflects the influence of the atmospheric circulation on the accumulation distribution.


Sign in / Sign up

Export Citation Format

Share Document