Conundrums in species concepts: the discovery of a new cryptic species segregated from Parmelina tiliacea(Ascomycota: Parmeliaceae)

2011 ◽  
Vol 43 (6) ◽  
pp. 603-616 ◽  
Author(s):  
Jano NÚÑEZ-ZAPATA ◽  
Pradeep K. DIVAKAR ◽  
Ruth DEL-PRADO ◽  
Paloma CUBAS ◽  
David L. HAWKSWORTH ◽  
...  

AbstractParmelina tiliacea is a common, widely distributed species in south-western Europe, easily identifiable by morphology and much used as an air pollution bioindicator in many regions. A molecular phylogenetic survey of samples from many geographical areas, using Maximum Parsimony and Bayesian inference of nuITS and mtLSU rDNA regions, revealed a group of samples geographically restricted to a small region of the Iberian Peninsula and genetically separated from the other P. tiliacea specimens studied. These samples are morphologically indistinguishable from P. tiliacea, apart from subtle anatomical characters in the ascomata (hyphae of the exciple and ascospore width), which are frequently absent. Although geographically different, the two taxa occupy similar habitats and are even sympatric in some areas, indicating that they do not exchange genetic material. This previously overlooked, and apparently endemic lineage, is described as P. cryptotiliacea sp. nov., and the name Lichen tiliaceus is epitypified by a sequenced specimen to fix the application of Parmelina tiliacea to the widespread genotype. A second unexpected result was the discovery that the morphologically distinct P. pastillifera was nested within P. tiliacea. These two cases stress the need to use molecular tools to elucidate species concepts even within widespread morphologically well-characterized macrolichens. Such investigations are necessary to improve our understanding and estimation of biodiversity, and to facilitate the development of sound biodiversity conservation strategies for lichens.

2019 ◽  
Vol 57 (3) ◽  
pp. 653-656 ◽  
Author(s):  
Jerome Goddard ◽  
Michelle Allerdice ◽  
J Santos Portugal ◽  
Gail M Moraru ◽  
Christopher D Paddock ◽  
...  

Abstract In the 1930s, R. A. Cooley noted that Dermacentor occidentalis (Acarina: Ixodidae) and Dermacentor andersoni were closely related and could hybridize. Decades later, James Oliver discovered that crosses of Dermacentor variabilis, D. andersoni, and D. occidentalis could, on occasion, produce hybrids. A recent molecular analysis (both mtDNA and nDNA) in our laboratory revealed that certain specimens of Dermacentor andersoni nested with Dermacentor parumapertus. Does this close relationship, along with the mito-nuclear discordance we have observed, mean D. andersoni and D. parumapertus are a single species? By contemporary taxonomic criteria, this seems improbable based on their distinctly different morphologies, host associations, and ecologies. This paper explores ideas related to mito-nuclear discordance, hybridization, and introgression (primarily) not only in these two species but also other members of the genus Dermacentor. Both D. andersoni and D. parumapertus can be found on the same hosts and have sympatric distributions, so introgression of genetic material by occasional cross-mating between these two species is possible. Further, the difficulty in applying specific species concepts in ticks has been recently pointed out and a unified agreement on an integrative species concepts could clearly be useful in this situation. With the discovery of D. parumapertus as a potential vector of Rickettsia parkeri and the historically recognized role of D. andersoni in transmission of Rickettsia rickettsii, understanding the specific status of each lineage of these species (and others in the genus) is extremely important from a public health perspective.


2020 ◽  
Vol 86 (1) ◽  
pp. 1-26
Author(s):  
S T Williams ◽  
Y Kano ◽  
A Warén ◽  
D G Herbert

ABSTRACT The assignment of species to the vetigastropod genus Solariella Wood, 1842, and therefore the family Solariellidae Powell, 1951, is complicated by the fact that the type species (Solariella maculata Wood, 1842) is a fossil described from the Upper Pliocene. Assignment of species to genera has proved difficult in the past, and the type genus has sometimes acted as a ‘wastebasket’ for species that cannot easily be referred to another genus. In the light of a new systematic framework provided by two recent publications presenting the first molecular phylogenetic data for the group, we reassess the shell characters that are most useful for delimiting genera. Shell characters were previously thought to be of limited taxonomic value above the species level, but this is far from the case. Although overall shell shape is not a reliable character, our work shows that shell characters, along with radular and anatomical characters, are useful for assigning species to genera. Sculpture of the early teleoconch (the region immediately following the protoconch) and the columella are particularly useful characters that have not been used regularly in the past to distinguish genera. However, even with the combination of all morphological characters used in this study (shell, radular and eye), a few species are still difficult to assign to genera and in such cases molecular systematic data are essential. In the present study, we discuss 13 genera—12 of which were recovered as well-supported clades in recent molecular systematic studies—and provide morphological characters to distinguish them. We describe several new taxa: Chonospeira n. gen. (referred to as ‘clade B’ in previous molecular systematic studies), Phragmomphalina n. gen. (Bathymophila in part in molecular systematic studies) and Phragmomphalina vilvensi n. sp. (type species of Phragmomphalina n. gen.). We synonymize Hazuregyra Shikama, 1962 with Minolia A. Adams, 1860, Minolia subangulata Kuroda & Habe, 1952 with Minolia punctata A. Adams, 1860 and M. gemmulata Kuroda & Habe, 1971 with M. shimajiriensis (MacNeil, 1960). We also present the following new combinations: Bathymophila bairdii (Dall, 1889), B. dawsoni (Marshall, 1979), B. regalis (Marshall, 1999), B. wanganellica (Marshall, 1999), B. ziczac (Kuroda & Habe in Kuroda, Habe & Oyama, 1971), Chonospeira nuda (Dall, 1896), C. iridescens (Habe, 1961), C. ostreion (Vilvens, 2009), C. strobilos (Vilvens, 2009), Elaphriella corona (Lee & Wu, 2001), E. diplax (Marshall, 1999), E. meridiana (Marshall, 1999), E. olivaceostrigata (Schepman, 1908), E. opalina (Shikama & Hayashi, 1977), Ilanga norfolkensis (Marshall, 1999), I. ptykte (Vilvens, 2009), I. zaccaloides (Vilvens, 2009), Minolia shimajiriensis (MacNeil, 1960), M. watanabei (Shikama, 1962), Phragmomphalina alabida (Marshall, 1979), P. diadema (Marshall, 1999), P. tenuiseptum (Marshall, 1999), Spectamen euteium (Vilvens, 2009), S. basilicum (Marshall, 1999), S. exiguum (Marshall, 1999) and S. flavidum (Marshall, 1999).


2019 ◽  
Vol 34 (12) ◽  
pp. 2791-2805
Author(s):  
George B. Paterson ◽  
Gill Smart ◽  
Paul McKenzie ◽  
Sally Cook

Abstract Context Habitat loss and fragmentation contribute significantly to pollinator decline and biodiversity loss globally. Conserving high quality habitats whilst restoring and connecting remnant habitat is critical to halt such declines. Objectives We quantified the connectivity of pollinator habitats for a generic focal species (GFS) which represented three groups of pollinators in an existing coastal nectar habitat network. Subsequently, in partnership with a conservation agency, we modelled an improved landscape that identified priority habitat patches to increase connectivity for pollinators. Methods We selected 4260 pollinator habitats along an 80 km section of coastland in Scotland using Phase 1 habitat data. A GFS represented three vulnerable European pollinator groups while graph theory and spatial metrics were used to identify optimal sites that could enhance habitat connectivity. Results Higher dispersing species experienced greater habitat connectivity in the improved landscape and habitat availability increased substantially in response to small increases in habitat. The improved landscape revealed important habitat patches in the existing landscape that should be protected and developed. Conclusions Our findings highlight that optimal landscapes can be designed through the integration of habitat data with spatial metrics for a GFS. By adopting this novel approach, conservation strategies can be targeted in an efficient manner to conserve at-risk species and their associated habitats. Integrating these design principles with policy and practice could enhance biodiversity across Europe.


2021 ◽  
Vol 46 (4) ◽  
pp. 935-950
Author(s):  
Katsuhiro Yashiro ◽  
Yasuhiko Endo

Abstract— The genus Eleocharis (Cyperaceae, monocotyledons) is characterized by bladeless leaves, which are leaves having only leaf-sheaths. To study the evolutionary process through which Eleocharis species lost their leaf blades, we analyzed the outer morphological and anatomical characters of the representative Eleocharis species, plus species from nine phylogenetically related genera. From the analysis, we recognized eight characters and we optimized their character states on a recent molecular phylogenetic tree. As a result, we recognized five characteristics shared by Eleocharis species as follows: (1) the most apical internode is more than seven times longer than the next apical internode; (2) bladeless leaves having only leaf sheaths; (3) transversely septate aerenchyma in culms; (4) densely and peripherally located, slender, and square timber-shaped fiber bundles in culms; and (5) palisade chlorenchyma in culms. In these characteristics, (2) and (4) are synapomorphies of Eleocharis. These two apomorphic characteristics seemed to be adaptations for inhabiting running waters.


Author(s):  
Alevcan Kaplan ◽  
Alaattin Selçuk Ertekin ◽  
Esra Gündüzler

Leguminosae or Fabaceae is the third-largest flowering plant family and is important in terms of both food production and soil fertility. Wild Vicia species and the genetic diversity of the Southeastern Anatolia Region provide an invaluable resource for the improvement of cultivated temperate feed and legume crops. The rapid progress of technology in recent years has nowmade it possible to use modern techniques in phylogenetic studies and to examine plants in a greater detail using biochemical, cytological and molecular methods to supplement purely systematic studies. The use of molecular phylogenetic analysis is the most attractive alternative strategy for a more accurate identification of the species of the Vicia genus. In the current study, some Vicia L. taxa growing naturally in the Southeastern Anatolia Region were investigated using molecular phylogenetic analysis. Internal transcribed spacers (ITS) of nuclear ribosomal DNA were sequenced in order to study the phylogenetic relationships of Vicia L. taxa. Lathyrus inconspicuous L. and Lathyrus cassius Boiss. were used as an outgroup. The ITS area was determined to be approximately 479- 672 bp. The ITS sequences were submitted to the NCBI database and accession numbers obtained. The resulting tree clearly groups and separates the sect. Narbonensis, Ervilia, Peregrinae, Lathyroides, Vicia and Cracca species but was less able to distinguish species from sect. Hypechusa and Lentopsis. The data acquired were observed to be reliable in terms of solving the taxonomical problems of the Vicia L. taxa. The morphological distinctions are greatly supported by DNA sequence studies. The species-specific markers developed in this study are useful for early detection of targeted Vicia taxa and can act as a guide to the basic data required for the evolution of systematic breeding and conservation strategies, as well as for germplasm resources.


Zootaxa ◽  
2017 ◽  
Vol 4243 (2) ◽  
pp. 249 ◽  
Author(s):  
MARTIN KONWERT ◽  
SEBASTIAN STUMPF

Exceptionally well-preserved fishes of the family Leptolepidae (Actinopterygii, Teleostei) from the late Early Jurassic Fossil-Lagerstätten of Grimmen and Dobbertin (Mecklenburg-Western Pomerania, NE Germany) are reported and detailed anatomical descriptions are given. The described material specifically derives from the “Green Series”, which represents a specific facies that falls within the lower part of the early Toarcian Harpoceras falciferum ammonite Zone. Complete skeletons are rare, and most specimens are represented by isolated skulls. Most of the skulls are fully articulated and show only a low degree of compaction, while some specimens are almost three-dimensionally preserved. The leptolepid fauna comprises Leptolepis coryphaenoides, L. normandica, L. jaegeri, a possible Proleptolepis, and two other taxa, which are described in open nomenclature. Several anatomical characters, such as the shape of premaxilla, maxilla, dentary, preopercle, the cephalic sensory canals, and the dentition of the jaws, are discussed and compared to former studies. The new material provides novel insights into morphology, diversity and palaeobiogeography of leptolepid fishes. The records of Leptolepis coryphaenoides, L. normandica and L. jaegeri from Grimmen and Dobbertin represent the northeastern-most occurrences of these species from Europe, suggesting that they inhabited the whole central European epicontinental sea during the early Toarcian. The possible occurrence of Proleptolepis in the lower Toarcian of Grimmen suggests that this genus might have had a much wider palaeobiogeographical and temporal distribution, since specimens attributed to Proleptolepis have previously been reported only from the Sinemurian of western Europe. 


2005 ◽  
Vol 37 (1) ◽  
pp. 55-65 ◽  
Author(s):  
Pradeep K. DIVAKAR ◽  
Oscar BLANCO ◽  
David L. HAWKSWORTH ◽  
Ana CRESPO

Molecular phylogenetic analyses based on nuclear ITS rDNA and mitochondrial SSU rDNA sequences from 32 specimens representing Parmotrema pseudoreticulatum, P. reticulatum and P. clavuliferum from Africa, Asia, Australia, and Europe are reported. Samples from western Europe and South Africa formed an independent monophyletic group, which belongs to P. pseudoreticulatum, a species not accepted by some recent authors, that has only been reported from Portugal, Spain and Morocco. In contrast, P. reticulatum and P. clavuliferum, both widely distributed taxa, formed a monophyletic clade, supporting the synonymy already proposed on the basis of morphological features.


Oryx ◽  
1994 ◽  
Vol 28 (2) ◽  
pp. 128-130 ◽  
Author(s):  
K. Baranauskas ◽  
E. Mickevičius ◽  
S. M. Macdonald ◽  
C. F. Mason

The authors carried out the first field survey for otters in Lithuania, which demonstrated that the species is still widespread. With otters now rare or absent in much of western Europe, conservation strategies for the animal and its habitats in remaining eastern European strongholds must be developed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maira Maselli ◽  
Konstantinos Anestis ◽  
Kerstin Klemm ◽  
Per Juel Hansen ◽  
Uwe John

Many marine ciliate species retain functional chloroplasts from their photosynthetic prey. In some species, the functionality of the acquired plastids is connected to the simultaneous retention of prey nuclei. To date, this has never been documented in plastidic Strombidium species. The functionality of the sequestered chloroplasts in Strombidium species is thought to be independent from any nuclear control and only maintained via frequent replacement of chloroplasts from newly ingested prey. Chloroplasts sequestered from the cryptophyte prey Teleaulax amphioxeia have been shown to keep their functionality for several days in the ciliate Strombidium cf. basimorphum. To investigate the potential retention of prey genetic material in this ciliate, we applied a molecular marker specific for this cryptophyte prey. Here, we demonstrate that the genetic material from prey nuclei, nucleomorphs, and ribosomes is detectable inside the ciliate for at least 5 days after prey ingestion. Moreover, single-cell transcriptomics revealed the presence of transcripts of prey nuclear origin in the ciliate after 4 days of prey starvation. These new findings might lead to the reconsideration of the mechanisms regulating chloroplasts retention in Strombidium ciliates. The development and application of molecular tools appear promising to improve our understanding on chloroplasts retention in planktonic protists.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei-Han Shao ◽  
Jian-Li Cheng ◽  
E Zhang

There is increasing evidence that species diversity is underestimated in the current taxonomy of widespread freshwater fishes. The bagrid species T. albomarginatus s.l. is mainly distributed in the lowlands of South China, as currently identified. A total of 40 localities (including the type locality), which covers most of its known range, were sampled. Molecular phylogenetic analyses based on concatenated mtDNA and nuclear genes recover nine highly supported lineages clustering into eight geographic populations. The integration of molecular evidence, morphological data, and geographic distribution demonstrates the delineation of T. albomarginatus s.l. as eight putative species. Four species, namely, T. albomarginatus, T. lani, T. analis, and T. zhangfei sp. nov. and the T. similis complex are taxonomically recognized herein. Moreover, T. zhangfei sp. nov. comprises two genetically distinct lineages with no morphological and geographical difference. This study also reveals aspects of estimation of divergence time, distribution, and ecological adaption within the T. albomarginatus group. The unraveling of the hidden species diversity of this lowland bagrid fish highlights the need for not only the molecular scrutiny of widely distributed species of South China but also the adjustment of current biodiversity conservation strategies to protect the largely overlooked diversity of fishes from low-elevation rapids.


Sign in / Sign up

Export Citation Format

Share Document