Energy Values of Marine Benthic Invertebrates from the Western English Channel

Author(s):  
Jean-Claude Dauvin ◽  
Michelle Joncourt

Energy values of many cold-water marine invertebrates are available (see Wacasey & Atkinson, 1987 and Brey et al, 1988), but energy values of temperate-water marine invertebrates have not been systematically investigated. In an attempt to determine the energy content of the macrobenthic communities from the bay of Morlaix (western English Channel), the caloric values in a large number of species living in these communities has been measured. This paper is presented as a contribution to the knowledge of the energy content of macrobenthic invertebrates from a temperate sea.

Diversity ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 80 ◽  
Author(s):  
Angelina Lo Giudice ◽  
Carmen Rizzo

The ecological function of bacteria-invertebrate interactions in Polar areas remains poorly understood, despite increasing evidence that microbial metabolites may play pivotal roles in host-associated chemical defense and in shaping the symbiotic community structure. The metabolic and physiological changes that these organisms undergo in response to adapting to extreme conditions result in the production of structurally and functionally novel biologically active molecules. Deepening our knowledge on the interactions between bacteria and their invertebrate host would be highly helpful in providing the rationale for why (e.g., competition or cooperative purpose) and which (whether secondary metabolites, enzymes, or proteins) bioactive compounds are produced. To date, cold-adapted bacteria associated with marine invertebrates from the Arctic and Antarctica have not been given the attention they deserve and the versatility of their natural products remains virtually unexplored, even if they could represent a new attractive frontier in the search for novel natural compounds. This review is aimed at showcasing the diversity of cold-adapted bacteria associated with benthic invertebrates from Polar marine areas, highlighting the yet unexplored treasure they represent for biodiscovery.


2021 ◽  
Author(s):  
Jessica Hurley ◽  
Jorg Hardege ◽  
Katharina C. Wollenberg Valero ◽  
Simon Morley

<p>Microplastics have been recognised as persistent marine contaminants and mounting evidence supports their designation as anthropogenic stressors to marine organisms. Despite the remoteness of Antarctica, microplastics contamination has been reported in every marine environment investigated in this area to date. Due to ocean currents and frontal systems, microplastics may become entrapped within polar regions and increase bioavailibilty to inhabiting fauna. Antarctic marine benthic invertebrates represent a research priority due to their sensitivity to change as well as contribution to ecological functioning and food webs. The current study investigated microplastics ingestion by the epifaunal, carnivorous polychaete <em>Barrukia cristata</em> and the infaunal, filter-feeding bivalve, <em>Laternula elliptica</em>. Animals were collected by SCUBA adjacent to Rothera research station, Adelaide Island. After digestion in 10 % potassium hydroxide (KOH) followed by filtration, microplastics ingested by individual animals were separated. Microplastics were then counted and characterised by shape, colour, size and polymer type by Micro-Fourier transform Infrared spectroscopy. Polyethylene terephthalate (PET) was the most abundant polymer type, followed by polyacrylonitrile (PAN) and ethylene-vinyl acetate (EVA). Congruent to earlier reports, fibres were found to be the most abundant source of microplastics contamination. However, it must be highlighted that fragments were also recovered from the animals analysed. Results determined the current level of microplastics ingestion by two benthic marine invertebrates of different feeding strategies in coastal environments of the Antarctic Peninsula. These findings indicated the bioavailability of microplastics and highlighted the potential of trophic transfer throughout the Antarctic marine food web.</p>


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 47
Author(s):  
Justin M. McNab ◽  
Jorge Rodríguez ◽  
Peter Karuso ◽  
Jane E. Williamson

Marine invertebrates are promising sources of novel bioactive secondary metabolites, and organisms like sponges, ascidians and nudibranchs are characterised by possessing potent defensive chemicals. Animals that possess chemical defences often advertise this fact with aposematic colouration that potential predators learn to avoid. One seemingly defenceless group that can present bright colouration patterns are flatworms of the order Polycladida. Although members of this group have typically been overlooked due to their solitary and benthic nature, recent studies have isolated the neurotoxin tetrodotoxin from these mesopredators. This review considers the potential of polyclads as potential sources of natural products and reviews what is known of the activity of the molecules found in these animals. Considering the ecology and diversity of polyclads, only a small number of species from both suborders of Polycladida, Acotylea and Cotylea have been investigated for natural products. As such, confirming assumptions as to which species are in any sense toxic or if the compounds they use are biosynthesised, accumulated from food or the product of symbiotic bacteria is difficult. However, further research into the group is suggested as these animals often display aposematic colouration and are known to prey on invertebrates rich in bioactive secondary metabolites.


Ecology ◽  
2013 ◽  
Vol 94 (1) ◽  
pp. 250-256 ◽  
Author(s):  
Colin B. A. Macfarlane ◽  
David Drolet ◽  
Myriam A. Barbeau ◽  
Diana J. Hamilton ◽  
Jeff Ollerhead

Author(s):  
M. F. Dyer

The distribution patterns of many marine benthic invertebrates are not well known, and when records exist they are usually in the form of presence and absence data with little or no information on the relative density of populations from area to area.


2016 ◽  
Vol Volume 112 (Number 11/12) ◽  
Author(s):  
Elisabeth K. Olsen ◽  
Christopher K. de Cerf ◽  
Godwin A. Dziwornu ◽  
Eleonora Puccinelli ◽  
Isabelle J. Ansorge ◽  
...  

Abstract Over the past 50 years, marine invertebrates, especially sponges, have proven to be a valuable source of new and/or bioactive natural products that have the potential to be further developed as lead compounds for pharmaceutical applications. Although marine benthic invertebrate communities occurring off the coast of South Africa have been explored for their biomedicinal potential, the natural product investigation of marine sponges from the sub-Antarctic Islands in the Southern Ocean for the presence of bioactive secondary metabolites has been relatively unexplored thus far. We report here the results for the biological screening of both aqueous and organic extracts prepared from nine specimens of eight species of marine sponges, collected from around Marion Island and the Prince Edward Islands in the Southern Ocean, for their cytotoxic activity against three cancer cell lines. The results obtained through this multidisciplinary collaborative research effort by exclusively South African institutions has provided an exciting opportunity to discover cytotoxic compounds from sub-Antarctic sponges, whilst contributing to our understanding of the biodiversity and geographic distributions of these cold-water invertebrates. Therefore, we acknowledge here the various contributions of the diverse scientific disciplines that played a pivotal role in providing the necessary platform for the future natural products chemistry investigation of these marine sponges from the sub- Antarctic Islands and the Southern Ocean.


1993 ◽  
Vol 50 (12) ◽  
pp. 2641-2651 ◽  
Author(s):  
Donald A. Jackson ◽  
Harold H. Harvey

Fish and benthic invertebrates from 40 lakes in south-central Ontario showed significantly concordant patterns based on community structure. Fish communities were associated significantly with lake morphological characteristics, but were uncorrelated with water chemistry. Large, deep lakes differed from shallow lakes in their fish species, having richer faunas due to the additional cold-water species. Centrarchid species occurred more frequently in small, shallow lakes than in larger lakes. The invertebrate community was not correlated with lake morphology, but showed a significant association with water chemistry, principally lake pH. A strong contrast in the abundance of Chaoborus and Holopedium existed, but it was unclear whether this was due to a predator–prey relationship or to differences in acid tolerance. Although the lakes showed similar patterns in the composition of both communities, each community was associated with a different set of environmental factors. Biotic processes within and between communities explain this paradox in community–environment relationships. Such biotic interactions may involve direct processes such as fish predation on a particular invertebrate taxon or indirect factors, e.g., where fish limit the abundance of invertebrate predators, thereby limiting the impact of these invertebrate predators.


Sign in / Sign up

Export Citation Format

Share Document